

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

COAL COMBUSTION RESIDUAL RULE 2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PERMANENT DISPOSAL POND 5 MARTIN LAKE STEAM ELECTRIC STATION RUSK COUNTY, TEXAS

January 31, 2024

Prepared For:

Luminant Generation Company LLC

Prepared By:

Bullock, Bennett & Associates, LLC 165 N. Lampasas Street Bertram, Texas 78605 Phone: 512.355.9198 • Fax: 512.355.9197

Texas Engineering Firm Registration No. F-8542 Texas Geoscience Firm Registration No. 50127

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF FIGURES	ii
LIST OF TABLES	ii
LIST OF APPENDICES	ii
ACRONYMS AND ABBREVIATIONS	ii
EXECUTIVE SUMMARYi	V
1.0 INTRODUCTION	1
2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS	3
3.0 KEY ACTIONS COMPLETED IN 2023	5
4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS	6
5.0 KEY ACTIVITIES PLANNED FOR 2024	7
6.0 REFERENCES	8
SIGNATURE PAGE	9

LIST OF FIGURES

Figure 1 Site Plan

LIST OF TABLES

- Table 1
 Appendix III Statistical Background Values
- Table 2Appendix III Analytical Results
- Table 3Groundwater Elevation Summary

LIST OF APPENDICES

- Appendix A Alternante Source Demonstration Report
- Appendix B Laboratory Analytical Reports
- Appendix C Groundwater Potentiometric Surface Maps

ACRONYMS AND ABBREVIATIONS

BBA	Bullock, Bennett & Associates, LLC
CCR	Coal Combustion Residuals
C.F.R.	Code of Federal Regulations
GWPS	Groundwater Protection Standard
MCL	Maximum Concentration Level
mg/L	Milligrams per Liter
MLSES	Martin Lake Steam Electric Station
NA	Not Applicable
PDP	Permanent Disposal Pond
SSI	Statistically Significant Increase
SSL	Statistically Significant Level
T.A.C.	Texas Administrative Code
USEPA	United States Environmental Protection Agency

EXECUTIVE SUMMARY

Bullock, Bennett & Associates, LLC (BBA) has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy the 2023 annual groundwater monitoring and corrective action reporting requirements of 40 C.F.R. Part 257 and 30 T.A.C. Chapter 352 for the Permanent Disposal Pond 5 (PDP-5) (the "CCR unit") at the Martin Lake Steam Electric Station (MLSES) in Rusk County, Texas. The CCR unit and CCR monitoring well network are shown on Figure 1.

At the beginning and end of the 2023 reporting period, the CCR unit was operating under a Detection Monitoring Program as described in § 257.94. The Detection Monitoring Program for PDP-5 was established in September 2017. Statistically significant increases (SSIs) above background prediction limits were identified for several Appendix III parameters as part of the 2017 through 2022 Detection Monitoring events; however, Alternate Source Demonstrations were completed that indicated that a source other than the CCR unit caused the SSIs. During 2023, SSIs were also identified for Appendix III constituents, which included boron at well PDP-25, calcium at wells PDP-23 and PDP-25, and chloride at well MW-19 and PDP-23. Alternate sources for the SSIs identified in the 2023 sample data are being evaluated in accordance with § 257.94. If an alternate source is not identified to be the cause of the 2023 SSIs, an Assessment Monitoring Program will be established in accordance with § 257.94(e)(2).

1.0 INTRODUCTION

The CCR Rule (40 C.F.R. 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) was promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. TCEQ has adopted portions of the federal CCR rule at 30 T.A.C. Chapter 352 (Texas CCR Rule), and USEPA published its final approval of the Texas CCR rule on June 28, 2021. See 86 Fed. Reg. 33,892 (June 28, 2021). The Texas CCR Rule became effective on July 28, 2021, and it adopts and incorporates by reference the requirements for the annual groundwater monitoring report located at 40 C.F.R. §257.90. See 30 T.A.C. § 352.901. It further adopts and incorporates by reference the Federal CCR Program requirements for detection and assessment monitoring in 30 T.A.C. §352.941 and 30 T.A.C. §352.951, respectively. Pursuant to 30 T.A.C. § 352.902, this report will be submitted to TCEQ for review no later than 30 days after the report has been placed in the facility's operating record. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per §257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over

background levels); and

- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - (i) At the start of the current annual reporting period, whether the CCR unit was operating

under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;

- (ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
- (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):
 - (A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and
 - (B) Provide the date when the assessment monitoring program was initiated for the CCR unit.
- (iv) If it was determined that there was a SSL above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:
 - (A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;
 - (B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - (C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - (D) Provide the date when the assessment of corrective measures was completed for the CCR unit.
- (v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and
- (vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The PDP-5 CCR Unit is currently in a Detection Monitoring Program. The initial Detection Monitoring Program groundwater samples were collected from the PDP-5 CCR monitoring well network in September 2017. Subsequent Detection Monitoring Program groundwater samples have been collected on a semi-annual basis since that time. Statistical analysis of the sample data is performed in accordance with the Statistical Analysis Plan for the site (Golder 2022) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009) to identify SSIs of Appendix III parameters over background concentrations. The statistical evaluation approach for the PDP-5 groundwater monitoring program is based on intrawell data evaluations, which compare new sample data to historical data at each groundwater monitoring well independently. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Cummary							
Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established				
September 2017 February 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
June 2018 September 2018 November 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
May 2019 November 2019	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
May 2020 September 2020	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
June 2021 October 2021	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
May 2022 September 2022	Appendix III	Yes	No (Alternate Source Demonstration Completed)				
May 2023 August 2023	Appendix III	Yes	No (Alternate Source Is Being Assessed)				

Detection Monitoring Program Summary

Appendix III statistical background values and sample analytical data are presented in Tables 1 and 2, respectively. SSIs of Appendix III parameters were identified for the 2017 through 2022 sampling events. An initial Alternate Source Demonstration was completed in 2018, which indicated that a source other than the CCR unit caused the SSIs observed in the 2017 sample data and 2018 re-sample data. Similarly, Alternate Source Demonstrations were completed in 2019 through 2023 based on the 2018 through 2022 sample data. As such, PDP-5 has remained in the Detection Monitoring Program. A summary of the Alternate Source Demonstration completed in 2023, which was based on sample data collected in 2022, is presented in Appendix A as required by § 257.94(e)(2). The Alternate Source Demonstration for the 2022 sample data was also submitted via email to the executive director on March 23, 2023, as required under 30 TAC § 352.941(c)(2)

Detection Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network on a semi-annual basis in 2023. The first 2023 semi-annual Detection Monitoring Program sampling event was conducted in May 2023 and the second 2023 semi-annual Detection Monitoring Program sampling event was conducted in August 2023. The 2023 laboratory analytical reports are provided in Appendix B. The analytical data from the 2023 semi-annual Detection Monitoring Program sampling events were evaluated using procedures described in the Statistical Analysis Plan (Golder 2022) to identify SSIs of Appendix III parameters over background concentrations. SSIs of Appendix III parameters over background concentrations were identified in 2023 for boron at well PDP-25, calcium at wells PDP-23 and PDP-25, and chloride at well MW-19 and PDP-23. Alternate sources for the SSIs identified in the 2023 sample data are being evaluated in accordance with § 257.94. If an alternate source is not identified to be the cause of the SSIs, an Assessment Monitoring Program will be established in accordance with § 257.94(e)(2).

A notification was submitted to the executive director via email on December 19, 2023, following the SSI determinations as required under 30 TAC § 352.941(b). In addition, a notification of the intent to make an Alternate Source Demonstration under 30 TAC § 352.941(c)(1) for SSIs observed in the 2023 sample data was submitted to the executive director via email on December 19, 2023.

3.0 KEY ACTIONS COMPLETED IN 2023

Two semi-annual Assessment Monitoring Program groundwater monitoring events were performed in 2023. The number of groundwater samples that were collected for analysis from each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 1.

PDP-5 was constructed in 2010 on top of and immediately adjacent to closed and capped former pre-CCR Rule coal ash surface impoundments that began operation in 1979. PDP-5 extends above natural grade and represents a localized topographic high relative to the surrounding area. There are no upgradient monitoring wells at PDP-5. Water elevations measured in the PDP-5 CCR monitoring wells during the 2023 semi-annual groundwater sampling events are summarized in Table 3 and groundwater potentiometric surface maps are presented in Appendix C. The 2023 groundwater potentiometric surface maps indicate that groundwater flows radially outward from the topographic high at PDP-5 at approximately 1 foot per year, which is similar to previously observed conditions at the site.

An Alternate Source Demonstration was completed in March 2023, which documented that a source other than PDP-5 caused the SSIs detected over background levels during the 2022 Detection Monitoring Program monitoring events, as required by § 257.94(e)(2). A copy of the Alternate Source Demonstration is provided in Appendix A. The completed Alternate Source Determination was also submitted to the executive director on March 23, 2023, as required under 30 TAC § 352.941(c)(2).

No CCR wells were installed or decommissioned in 2023.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

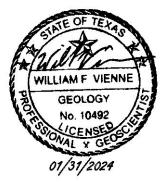
No problems were encountered with the CCR groundwater monitoring program in 2023.

5.0 KEY ACTIVITIES PLANNED FOR 2024

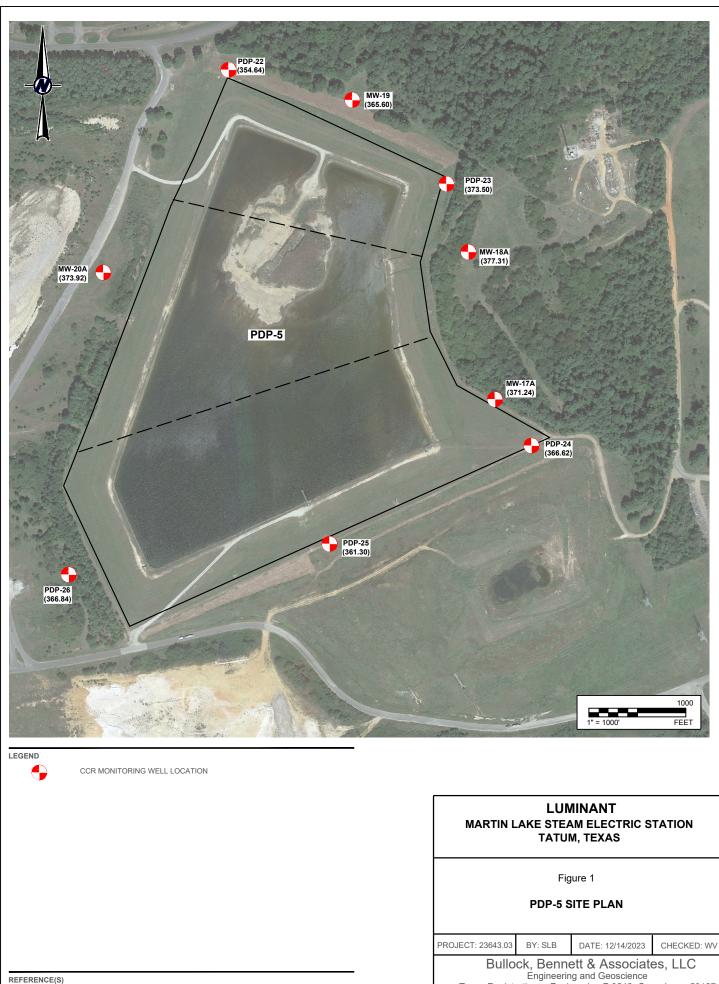
The following key activities are planned for 2024:

- Continue the Detection Monitoring Program in accordance with applicable provisions of §257.95 and 30 T.A.C. §352.941.
- If an alternate source is identified to be the cause of the SSIs observed in 2023, which are described in this report, a written demonstration will be completed within 90 days of SSI determination and included in the following Annual Groundwater Monitoring and Corrective Action Report. A notification of intent to make an Alternate Source Demonstration under 30 TAC § 352.941(c)(1) for SSIs observed in 2023 was submitted to the executive director via email on December 19, 2023.
- If an alternate source is not identified to be the cause of the SSIs, an Assessment Monitoring Program will be established.

6.0 **REFERENCES**


- Golder, 2022. Statistical Analysis Plan Revision No. 1, Martin Lake Steam Electric Station Permanent Disposal Pond 5, Rusk County, Texas.
- USEPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530/R-09-007, March.

SIGNATURE PAGE


Bullock, Bennett & Associates, LLC

illia V: ĥ

William Vienne, P.G. Senior Hydrogeologist

FIGURES

C:IBBA Engineering Dropbox/Jobs/23643 - Luminant Env Support\5 Technical Work\CCR GW Monitoring/23643-03 Martin Lake\Pot Maps

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED SEPTEMBER 8, 2021.

TABLES

Sample Location	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Flouride (mg/L)	field pH (s.u.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-17A	0.538	6.73	10.4	0.4	2.5 9.19	51.9	170
MW-18A	0.20	3.1	10.4	0.4	4.88 7.92	9.1	157
MW-19	0.782	237	57.7	0.512	4.6 8.08	672	1,380
MW-20A	0.213	25.7	12.3	0.954	3.06 8.76	148	381
PDP-22	0.411	306	32.7	1.07	4.08 8.63	216	1,780
PDP-23	0.0678	2	7.52	0.4	3.38 8.45	3.27	143
PDP-24	4.92	45.9	22.6	1.03	1.33 9.97	533	894
PDP-25	0.136	41.3	197	0.4	4.65 7.93	118	705
PDP-26	0.111	4.74	14.6	0.577	5.35 7.57	64.6	438

Table 1 Statistical Background Values MLSES - PDP 5

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5

Sample	Date	В	Ca	CI	F	field pH	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	s.u.	(mg/L)	(mg/L)
	09/22/17	0.402	3.1	8.3	<0.1	6.78	31.2	111
	06/14/18	0.485	6.48	9.16	<0.1	6.87	45.9	129
	09/11/18	0.523	5.06	8.82	0.179 J	5.03	43.1	137
	05/13/19	0.497	4.88	9.18	<0.1	6.79	44.7	145
	11/07/19	0.52	5.05	8.81	<0.100	6.44	43.9	127
	05/19/20	0.521	5.09	8.74	<0.100	6.57	46.8	140
MW-17A	09/25/20	0.477	5.76	10.1	<0.100	6.57	47.7	133
	06/03/21	0.534	6.21	7.83	<0.100	6.69	50.4	146
	10/05/21	0.393	3.95	8.42	<0.100	6.57	34.3	115
	05/25/22	0.487	6.27	8.67	<0.100	6.94	49.4	149
	06/06/22	0.452	5.71	10			50	148
	09/22/22	0.386	3.83	8.73	<0.100	6.83	32.6	98
	05/18/23	0.504	5.89	9.67	<0.100	6.71	52.8	149
	08/14/23	0.432	4.21	9.1	<0.100	6.43	36.8	117
	09/21/17	0.0654	1.04	5.27	<0.1	6.94	3.23	45
	06/14/18	0.102	2	6.56	<0.1	6.92	3.48	71
	09/12/18	0.211	3.23	9.06	<0.1	5.69	4.82	150
	11/7/2018	0.128						
	re-sample							
	05/13/19	0.117	1.01	6.17	0.138 J	6.64	3.23	73
	11/07/19	0.127	11.5	6.34	<0.100	6.23	3.67	68
MW-18A	05/19/20	0.225	1.54	7.09	<0.100	6.89	5.97	86
	09/25/20	0.188	1.66	8.13	<0.100	6.78	6.03	77
	06/03/21	0.188	1.73	6.2	<0.100	6.69	6.20	76
	10/05/21	0.159	1.49	6.63	<0.100	6.59	5.73	76
	05/25/22	0.176	2.01	7.31	<0.100	6.52	6.83	86
	09/21/22	0.186	3.6	8.18	<0.100	6.59	11.7	89
	05/18/23	0.20	2.83	9.8	<0.100	6.88	7.59	100
	08/15/23	0.20	2.58	8.37	<0.100	6.58	6.79	87
	09/22/17	0.0677	2.74	5.36	<0.1	6.94	1.46 J	98
	06/14/18	0.577	133	24.4	0.216 J	6.78	328	758
	09/11/18	0.243	38	65.1	0.228 J	6.04	166	597
	11/7/2018			5.22				
	re-sample							
	05/13/19	0.429	122	26.8	0.229 J	6.72	349	813
	11/08/19	0.529	77.8	49.3	0.189 J	6.87	310	844
MW-19	05/19/20	0.0724	1.49	5.84	<0.100	6.91	1.02 J	85
	09/25/20	0.412	94.6	14.3	0.111 J	6.92	160	462
	06/03/21	0.56	140	19.5	0.352 J	6.75	336	751
-	10/05/21	0.495	124	62.9	0.180 J	6.74	323	896
	05/25/22	0.711	189	47.3	0.192 J	6.79	346	1010
	06/07/22	0.574	147	55.4			313	970
	09/21/22	0.382	45.0	92.2	0.108 J	6.93	212	723
	05/18/23	0.788	173	22.5	0.104	6.77	244	724
	08/14/23	0.627	113	67.5	0.142	6.59	275	877

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5

Sample	Date	В	Ca	CI	F	field pH	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	s.u.	(mg/L)	(mg/L)
	09/22/17	0.0807	17.4	12.6	0.175 J	6.71	74.2	237
	02/21/18			40.7				
	re-sample			10.7				
	06/13/18	0.171	24	10.9	0.672	6.72	132	250
	09/11/18	0.141	7.16	11	0.235 J	4.70	39.1	154
	05/13/19	0.239	37.4	10.2	0.731	6.81	178	328
	11/08/19	0.132	9.9	10.2	0.465	6.51	88	205
	05/19/20	0.220	24	10.4	0.413	6.83	133	270
MW-20A	09/25/20	0.107	8.94	12.6	0.132 J	6.68	54.3	162
	06/03/21	0.152	26.1	9.63	0.324	6.73	93.2	218
	10/05/21	0.0724	6.12	10.8	0.127 J	6.44	32.8	139
	05/25/22	0.102	15.3	10.6	0.239 J	6.75	65.7	207
	06/07/22	0.0888	9.89	12.2			49.3	178
	09/22/22	0.0466	2.93	6.68	<0.100	6.48	1.42 J	84
	05/18/23	0.0711	9.65	11.3	<0.100	6.83	38.9	169
	08/14/23	0.0715	4.72	11.4	<0.100	6.58	21	130
	09/22/17	0.221	92.5	12.3	0.321 J	6.98	178	558
	06/14/18	0.115	7.78	11.8	0.239	6.63	186	491
	09/12/18	0.164	61.1	10.9	0.216 J	5.88	143	476
	05/13/19	0.158	98.2	10.1	0.303 J	6.86	184	615
	11/12/19	0.226	34.3	12.6	0.218 J	6.93	215	482
	05/19/20	0.0646	54.9	1.06	<0.100	6.55	5.21	205
PDP-22	09/25/20	0.206	25.1	12.7	0.128 J	6.73	186	398
	06/03/21	0.121	73.1	6.64	<0.100	6.52	118	415
	10/05/21	0.166	27.1	10.1	0.223 J	6.78	170	376
	05/25/22	0.137	16.4	9.92	0.183 J	8.82	104	289
	09/21/22	0.141	14.9	10.4	0.106 J	6.42	112	280
	05/18/23	0.160	39.1	10.1	<0.100	6.93	109	379
	08/15/23	0.116	10.4	8.19	<0.100	6.81	68.4	223
	09/22/17	0.0463	2.34	4.48	0.147 J	6.77	1.47 J	111
	02/21/18		2.37					
	re-sample							
	06/13/18	0.0357	2.29	6.21	<0.1	6.82	1.26 J	98
	09/11/18	0.0760	1.96	6.38	<0.1	5.32	1.52 J	98
	11/7/2018	0.0683						
	re-sample							
	05/13/19	0.0628	1.89	6.98	<0.1	6.68	1.28 J	103
	11/12/19	0.0675	2.14	4.98	<0.100	6.72	1.41 J	93
PDP-23	05/19/20	0.0709	2.03	6.86	<0.100	6.83	1.19 J	104
	09/25/20	0.0617	2.31	7.29	<0.100	6.74	<1.00	94
	06/03/21	0.0818	2.32	6.88	<0.100	6.57	1.42 J	101
	10/05/21	0.0661	2.38	6.58	<0.100	6.59	1.02 J	97
	05/25/22	0.0441	4.03	5.9	<0.100	6.20	1.44 J	110
	09/21/22	0.0663	2.53	6.72	<0.100	6.63	1.18 J	104
	05/18/23	0.0976	2.88	6.65	<0.100	6.75	1.35	115
	05/18/2023 DUP	0.0818	2.82	6.66	<0.100	6.75	1.33	111
	08/15/23	0.0681	2.37	8.12	<0.100	6.76	1.20	118
	08/15/23 DUP	0.0671	2.44	8.02	<0.100	6.76	1.22	114

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5

Sample	Date	В	Ca	CI	F	field pH	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	s.u.	(mg/L)	(mg/L)
	09/22/17	3.01	25.8	17.5	0.898	6.95	231	440
	06/14/18	2.71	23.9	21.1	0.629	6.82	284	481
	09/11/18	4.08	41.6	19.4	0.832	4.20	460	760
	05/13/19	3.23	23	21	0.871	6.95	300	537
	11/12/19	3	21.9	20.6	0.751	6.87	295	520
	11/12/2019 DUP	2.97	22.2	20.5	0.744	6.87	300	504
PDP-24	05/19/20	3.17	21.4	21	0.61	6.79	286	512
101-24	09/25/20	4.04	40.7	19.6	0.776	6.83	445	699
	06/03/21	3.56	26.4	19.3	0.934	6.57	350	615
	10/05/21	4.24	46.9	17.8	0.782	6.72	432	681
	05/25/22	4.2	47.7	15.6	0.789	6.73	449	736
	09/21/22	4.23	46.7	17.8	0.771	6.72	456	744
	05/18/23	4.02	41.6	18.2	0.729	6.63	411	720
	08/14/23	3.36	29.8	19.1	0.817	6.52	353	640
	09/22/17	0.133	36.8	130	0.157 J	6.81	89.1	481
	06/14/18	0.119	40.4	111	<0.1	6.78	73.4	439
	09/11/18	0.167	36.2	135	0.115 J	5.87	90.3	469
	11/7/2018	0.142						
	re-sample							
	05/13/19	0.144	44.4	108	0.121 J	6.84	69	469
	11/12/19	0.184	38.6	117	<0.100	6.82	71.4	454
PDP-25	05/19/20	0.202	53.7	105	<0.100	6.61	62.2	442
	09/25/20	0.174	46.3	123	<0.100	6.77	67.5	445
	06/03/21	0.234	45.2	101	0.236 J	6.78	61.2	431
	10/05/21	0.159	40.4	115	<0.100	6.73	62.7	427
	05/25/22	0.151	47.5	102	<0.100	6.64	58.4	454
	09/21/22	0.166	52.8	109	<0.100	6.52	61.6	436
	05/18/23	0.266	56.3	107	<0.100	6.82	59.9	478
	08/14/23	0.15	71.5	93.6	<0.100	6.68	51.3	457
	09/22/17	0.0343	2.32	5.24	0.157 J	6.84	5.88	107
	06/14/18	0.0225 J	2.93	4.8	<0.1	6.89	4.27	100
	09/12/18	0.0371	2.37	4.88	<0.1	6.07	2.66 J	107
	05/13/19	0.0528	1.9	4.59	0.217 J	6.86	2.7 J	106
	11/12/19	0.0622	2.25	4.64	0.122 J	6.77	2.1 J	102
	05/19/20	0.0538	2.09	4.52	<0.100	6.64	2.1 J	108
	09/25/20	0.0549	2.71	5.07	<0.100	6.83	1.91	92
PDP-26	06/03/21	0.0516	2.37	4.05	<0.100	6.84	2.18 J	104
	6/3/21 DUP	0.0635	2.23	4.05	<0.1	6.84	2.05 J	107
	10/05/21	0.0486	3.85	4.48	0.194 J	6.74	3.28	104
	10/5/21 DUP	0.0432	3.58	4.24	0.192 J	6.74	2.49 J	103
	05/25/22	0.0424	2.62	4.08	0.109 J	6.73	2.46 J	111
	09/22/22	0.05	2.61	4.4	<0.100	6.47	2.08 J	92
	05/18/23	0.0965	2.76	4.59	<0.100	6.67	2.58 J	101
	08/14/23	0.0451	2.99	4.58	<0.100	6.74	2.12 J	106

Notes:

1. All concentrations in mg/L. pH in standard units.

2. J - concentration is below sample quantitation limit; result is an estimate.

	TOC Elevation	Date	Depth to Water	Water Elevation
Well ID	(ft amsl)	Bato	(ft bgs)	(ft amsl)
MW-17A	387.75	10/19/15	18.69	369.06
		12/14/15	17.14	370.61
		02/24/16	16.80	370.95
		04/05/16	16.46	371.29
		06/06/16	15.62	372.13
		08/09/16	16.14	371.61
		10/17/16	16.39	371.36
		12/11/16	18.17	369.58
		09/21/17	17.93	369.82
		06/13/18	17.62	370.13
		09/11/18	18.44	369.31
		05/13/19	15.09	372.66
		11/05/19	17.58	370.17
		05/19/20	15.96	371.79
		09/25/20	17.52	370.23
		06/03/21	15.41	372.34
		10/04/21	17.68	370.07
		05/24/22	18.09	369.66
		09/21/22	19.47	368.28
		05/17/23	16.51	371.24
MW-18A	414.44	08/14/23	19.06	368.69
MW-18A	414.44	10/20/15	37.41	377.03
		<u>12/14/15</u> 02/24/16	35.92	378.52 379.60
			34.84 33.88	379.60
		04/05/16 06/06/16	33.96	380.38
		08/09/16	33.04	381.40
		10/17/16	35.31	379.13
		12/11/16	37.46	376.98
		09/21/17	38.44	376.00
		06/13/18	37.81	376.63
		09/11/18	39.10	375.34
		05/13/19	32.21	382.23
		11/05/19	35.11	379.33
		05/19/20	33.68	380.76
		09/25/20	36.38	378.06
		06/03/21	33.48	380.96
		10/04/21	36.43	378.01
		05/24/22	37.62	376.82
		09/21/22	39.51	374.93
		05/17/23	37.13	377.31
		08/14/23	38.61	375.83

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)
MW-19	371.33	10/20/15	12.60	358.73
		12/14/15	5.14	366.19
		02/24/16	5.56	365.77
		04/05/16	5.99	365.34
		06/06/16	5.31	366.02
		08/09/16	9.59	361.74
		10/17/16	6.81	364.52
		12/11/16	9.06	362.27
		09/21/17	6.17	365.16
		06/13/18	10.59	360.74
		09/11/18	14.24	357.09
		05/13/19	3.51	367.82
		11/05/19	7.29	364.04
		05/19/20	6.34	364.99
		09/25/20	11.74	359.59
		06/03/21	4.63	366.70
		10/04/21	12.47	358.86
		05/24/22	10.93	360.40
		09/21/22	14.46	356.87
		05/17/23	5.73	365.60
		08/14/23	13.04	358.29
MW-20A	398.98	10/20/15	25.17	373.81
		12/14/15	23.64	375.34
		02/24/16	23.44	375.54
		04/05/16	23.23	375.75
		06/06/16	22.39	376.59
		08/09/16	23.92	375.06
		10/17/16	24.47	374.51
		12/11/16	25.96	373.02
		09/21/17	25.86	373.12
		06/13/18	25.61	373.37
		09/11/18	26.80	372.18
		11/05/19	25.24	373.74
		05/13/19	21.64	377.34
		05/19/20	20.71	378.27
		09/25/20	24.61	374.37
		06/03/21	23.12	375.86
		10/04/21	25.98	373.00
		05/24/22	25.37	373.61
		09/21/22	28.27	370.71
		05/17/23	25.06	373.92
		08/14/23	26.53	372.45

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)
PDP-22	386.75	10/20/15	34.17	352.58
		12/14/15	33.48	353.27
		02/24/16	33.09	353.66
		04/05/16	32.66	354.09
		06/06/16	33.49	353.26
		08/09/16	32.21	354.54
		10/17/16	32.59	354.16
		12/11/16	34.37	352.38
		09/21/17	33.14	353.61
		06/13/18	33.12	353.63
		09/11/18	33.86	352.89
		05/13/19	30.47	356.28
		11/05/19	32.78	353.97
		05/19/20	30.24	356.51
		09/25/20	30.87	355.88
		06/03/21	29.76	356.99
		10/04/21	30.42	356.33
		05/24/22	32.11	354.64
		09/21/22	33.11	353.64
		05/17/23	32.11	354.64
		08/14/23	32.67	354.08
PDP-23	394.43	10/20/15	23.61	370.82
		12/14/15	22.34	372.09
		02/24/16	19.94	374.49
		04/05/16	19.29	375.14
		06/06/16	18.11	376.32
		08/09/16	21.41	373.02
		10/17/16	22.51	371.92
		12/11/16	23.04	371.39
		09/21/17	23.98	370.45
		06/13/18	22.89	371.54
		09/11/18	24.69	369.74
		05/13/19	17.92	376.51
		11/05/19	23.27	371.16
		05/19/20	18.82	375.61
		09/25/20	22.11	372.32
		06/03/21	18.49	375.94
		10/04/21	22.42	372.01
		05/24/22	22.44	371.99
		09/21/22	24.61	369.82
		05/17/23	20.93	373.50
		08/14/23	24.31	370.12

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)
PDP-24	389.73	10/20/15	25.62	364.11
		12/14/15	24.94	364.79
		02/24/16	24.76	364.97
		04/05/16	24.51	365.22
		06/06/16	23.87	365.86
		08/09/16	22.61	367.12
		10/17/16	22.08	367.65
		12/11/16	24.19	365.54
		09/21/17	23.29	366.44
		06/13/18	23.21	366.52
		09/11/18	23.62	366.11
		05/13/19	23.62	366.11
		11/05/19	25.29	364.44
		05/19/20	23.38	366.35
		09/25/20	24.68	365.05
		06/03/21	23.82	365.91
		10/04/21	24.71	365.02
		05/24/22	25.16	364.57
		09/21/22	25.81	363.92
		05/17/23	23.11	366.62
		08/14/23	25.46	364.27
PDP-25	387.97	10/20/15	13.49	374.48
		12/14/15	12.76	375.21
		02/24/16	26.84	361.13
		04/05/16	26.96	361.01
		06/06/16	26.17	361.80
		08/09/16	26.06	361.91
		10/17/16	27.83	360.14
		12/11/16	29.71	358.26
		09/21/17	28.21	359.76
		06/13/18	27.71	360.26
		09/11/18	28.94	359.03
		05/13/19	26.23	361.74
		11/05/19	25.06	362.91
		05/19/20	26.39	361.58
		09/25/20	27.93	360.04
		06/03/21	26.21	361.76
		10/04/21	27.82	360.15
		05/24/22	27.21	360.76
		09/21/22	28.64	359.33
		05/17/23	26.67	361.30
		08/14/23	28.98	358.99

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)
PDP-26	397.68	10/20/15	31.24	366.44
		12/14/15	30.67	367.01
		02/24/16	30.11	367.57
		04/05/16	29.89	367.79
		06/06/16	29.06	368.62
		08/09/16	29.54	368.14
		10/17/16	30.57	367.11
		12/11/16	32.81	364.87
		09/21/17	32.22	365.46
		06/13/18	32.18	365.50
		09/11/18	32.90	364.78
		05/13/19	28.93	368.75
		11/05/19	32.83	364.85
		05/19/20	29.59	368.09
		09/25/20	30.56	367.12
		06/03/21	29.18	368.50
		10/04/21	30.11	367.57
		05/24/22	31.64	366.04
		09/21/22	33.06	364.62
		05/17/23	30.84	366.84
		08/14/23	31.77	365.91
PDP-27*	377.58	10/20/15	18.28	359.30
		12/14/15	7.61	369.97
		02/24/16	11.95	365.63
		04/05/16	10.27	367.31
		06/06/16	7.44	370.14
		08/09/16	17.46	360.12
		10/17/16	19.06	358.52
		12/11/16	19.78	357.80
		09/21/17	NM	NM
		06/13/18	NM	NM
		09/11/18	19.78	357.80
		11/05/19	NM	NM
		05/13/19	NM	NM
		05/19/20	NM	NM
		09/25/20	NM	NM
		06/04/21	NM	NM
		10/04/21	NM	NM
		05/24/22	NM	NM
		09/21/22	NM	NM
		05/17/23	NM	NM
		08/14/23	NM	NM

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft bgs)	Water Elevation (ft amsl)		
PDP-28*	368.62	10/20/15	13.68	354.94		
		12/14/15	13.68	354.94		
		02/24/16	10.75	357.87		
		04/05/16	9.61	359.01		
		06/06/16	11.74	356.88		
		08/09/16	10.91	357.71		
		10/17/16	12.19	356.43		
		12/11/16	13.09	355.53		
		09/21/17	NM	NM		
		06/13/18	NM	NM		
		09/11/18	14.24	354.38		
		05/13/19	NM	NM		
		11/05/19	NM	NM		
		05/19/20	NM	NM		
		09/25/20	NM	NM		
		06/04/21	NM	NM		
		10/04/21	NM	NM		
		05/24/22	NM	NM		
		09/21/22	NM	NM		
		05/17/23	NM	NM		
		08/14/23	NM	NM		
PDP-29*	383.05	10/20/15	14.12	368.93		
		12/14/15	14.06	368.99		
		02/24/16	12.45	370.60		
		04/05/16	10.86	372.19		
		06/06/16	12.62	370.43		
		08/09/16	11.24	371.81		
		10/17/16	13.09	369.96		
		12/11/16	14.23	368.82		
		09/21/17	NM	NM		
		06/13/18	NM	NM		
		09/11/18	16.01	367.04		
		05/13/19	NM	NM		
		11/05/19	NM	NM		
		05/19/20	NM	NM		
		09/25/20	NM	NM		
		06/04/21	NM	NM		
		10/04/21	NM	NM		
		05/24/22	NM	NM		
	[09/21/22	NM	NM		
		05/17/23	NM	NM		
		08/14/23	NM	NM		

Notes:

1. Abbreviations: ft - feet; amsl - above mean sea level; bgs - below ground surface

2. * - Non-CCR well used only to evaluate groundwater water elevatio

APPENDIX A

ALTERNATE SOURCE DEMONSTRATION REPORT

March 23, 2023

Eric Chavers Luminant Generation Company LLC 6555 Sierra Drive Irving, Texas 75039

RE: ALTERNATE SOURCE DEMONSTRATION SUMMARY MARTIN LAKE STEAM ELECTRIC STATION – PDP-5 RUSK COUNTY, TEXAS

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) Summary was prepared to document that a source other than the Permanent Disposal Pond 5 (PDP-5) (the Site) caused the statistically significant increases (SSIs) over background levels observed during the 2022 Coal Combustion Residual (CCR) Detection Monitoring Program sampling events, as required by 40 C.F.R. §257.94(e)(2) of the federal CCR Rule. The Texas Commission on Environmental Quality (TCEQ) has adopted portions of the federal CCR rule at 30 T.A.C. Chapter 352 (Texas CCR Rule). The Texas CCR Rule became effective on July 28, 2021, and it adopts and incorporates by reference the requirements for the annual groundwater monitoring report located at 40 C.F.R. §257.90 (See 30 T.A.C. §352.901) and the Federal CCR Program requirements for detection and assessment monitoring at 40 C.F.R. §257.94 and §257.95 (See 30 T.A.C. §352.941 and 30 T.A.C. §352.951). Pursuant to 30 T.A.C. §352.941(c)(1), a notification was submitted to the Executive Director on January 6, 2023 indicating an intent to pursue an ASD. This ASD will be submitted to the Executive Director pursuant to 30 T.A.C. §352.941(c)(2).

2.0 PDP-5 HISTORY AND CCR MONITORING WELL NETWORK

A Site Plan showing PDP-5 and vicinity is provided on Figure 1. PDP-5 was constructed in 2010 on top of and immediately adjacent to closed and capped former pre-CCR Rule coal ash surface impoundments that began operation in 1979. PDP-5 extends significantly above natural grade and represents a localized topographic high relative to the surrounding area. Based on this configuration, there are no upgradient monitoring wells at PDP-5 (PBW 2017).

The CCR groundwater monitoring well system at PDP-5 consists of nine monitoring wells (MW-17A, MW-18A, MW-19, MW-20A, PDP-22, PDP-23, PDP-24, PDP-25, PDP-26). As shown on Figure 1, the wells are distributed radially along the perimeter of PDP-5 and are screened in the uppermost aquifer.

3.0 2022 SEMI-ANNUAL DETECTION MONITORING RESULTS AND DISCUSSION

Detection Monitoring Program groundwater data collected from the PDP-5 CCR monitoring well network from 2017 through 2022 are summarized in Table 1. Detection Monitoring Program groundwater samples were collected on a semi-annual basis in 2022 in accordance with 40 CFR §257.94. Annual groundwater monitoring activities and sampling results were summarized in the Annual Groundwater Monitoring and Corrective Action Report (WSP Golder 2023).

As described in the CCR Statistical Analysis Plan (SAP) (WSP Golder 2022), intrawell statistical evaluations were used to identify SSIs in accordance with the United States Environmental Protection Agency's (USEPA's) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009). During 2022, SSIs (as indicated by sample data for a given well greater than the prediction limit for that analyte) were identified for boron in well PDP-25; calcium in wells PDP-18A, PDP-23, PDP-24, and PDP-25; chloride in well MW-19, and sulfate in well MW-18A.

The boron SSI concentrations in the 2022 groundwater samples from well PDP-25 (maximum boron concentration of 0.166 mg/L) exceeded the boron prediction limit of 0.136 mg/L for that well. The historical variability of boron in groundwater samples collected Site-wide has ranged from about 0.034 mg/L to 4.2 mg/L, and the boron SSI sample concentrations observed in 2022 fall into this historical range. In addition, the 2022 PDP-25 boron sample concentrations are lower than the boron sample concentrations in four of the eight other CCR monitoring wells (MW-17A, MW-18A, MW-19, and PDP-24) where SSIs were not indicated.

The calcium SSI concentrations in the 2022 groundwater samples from well MW-18A, PDP-23, PDP-24, and PDP-25 (maximum calcium concentration of 52.8 mg/L in well PDP-25) exceeded the calcium prediction limits established for each of these wells. The historical variability of calcium in groundwater samples collected Site-wide has ranged from about 1 mg/L to 189 mg/L, and the calcium SSI sample concentrations observed in 2022 fall into this historical range. In addition, one other Site well (MW-19) had a calcium sample concentration in the first semi-annual sampling event in 2022 that was higher than the concentrations observed in the 2022 calcium SSI samples, but SSIs were not indicated for that well.

The chloride SSI concentrations in the groundwater samples from well MW-19 (maximum chloride concentration of 92.2 mg/L) exceeded the chloride prediction limit of 57.7 mg/L for that well. The historical variability of chloride in groundwater samples collected Site-wide has ranged from about 1 mg/L to 135 mg/L, and the 2022 chloride SSI sample concentrations observed at MW-19 fall into this historical range. In addition, one other Site well (PDP-25) had chloride sample concentrations in 2022 that were higher than concentrations observed in the MW-19 samples, but SSIs were not indicated in that well.

The sulfate SSI concentration in the second semi-annual groundwater sample from well MW-18A (sulfate concentration of 11.7 mg/L) slightly exceeded the sulfate prediction limit of 9.1 mg/L for that well. The historical variability of sulfate in groundwater samples collected Site-wide has ranged from about 1 mg/L to 460 mg/L, and the 2022 sulfate SSI sample concentration observed at MW-18A falls into this historical range. In addition, six of the other eight CCR monitoring wells (MW-17A, MW-19, MW-20A, PDP-22, PDP-24, and PDP-25) had sulfate sample concentrations in 2022 that were higher than the maximum concentration observed in the MW-18A samples.

The historical calcium, chloride, and sulfate concentrations observed in Site wells, including those where SSIs were detected in 2022, are typical of concentrations observed in groundwater samples collected from other wells completed in the Wilcox Group in the region. The Texas Bureau of Economic Geology summarized general water chemistry parameter data including calcium, chloride, and sulfate groundwater sample data from Wilcox wells in the Sabine Uplift area, which encompasses Rusk County where PDP-5 is located. The Wilcox groundwater samples summarized in that study (Fogg et al. 1991) had calcium concentrations that ranged from 1.0 mg/L to 157 mg/L, chloride concentrations that ranged from 5.0 to 820 mg/L, and sulfate concentrations that ranged from near 0 to 1,570 mg/L. The calcium, chloride, and sulfate concentrations observed in PDP-5 CCR groundwater

monitoring well samples where SSIs were identified in 2022 all fall into the range of other samples from Wilcox wells in the region.

The Fogg et al. (1991) study did not evaluate boron data in Wilcox wells in the region; therefore, a direct comparison of the CCR groundwater monitoring data to regional boron concentrations is not possible. However, multiple groundwater investigations that evaluated whether boron and other constituent concentrations in groundwater could result in adverse effects to human health and the environment have been conducted at PDP-5 under the regulatory authority of the TCEQ. An Affected Property Assessment Report (APAR) was prepared for the PDP-5 area in 2014 using groundwater data collected before and after PDP-5 was constructed (PBW 2014). The APAR concluded that groundwater conditions in the PDP-5 area complied with TCEQ requirements, and no groundwater corrective actions were required. TCEQ approved the APAR in a letter dated August 29, 2014. Luminant provided a summary of the CCR groundwater monitoring data to the TCEQ on April 8, 2019 in response to a TCEQ letter requesting the data on March 22, 2019. An addendum to the 2014 APAR, which evaluated groundwater data collected from the PDP-5 CCR groundwater monitoring well network, was submitted to the TCEQ on October 18, 2019 (Golder 2019). The APAR Addendum concluded that groundwater conditions in the PDP-5 area complied with TCEQ approved the APAR Addendum in a letter dated January 31, 2020.

The EPA does not regulate boron in drinking water; however, the TCEQ has established groundwater ingestion protective concentration levels (PCLs) for boron. The TCEQ default groundwater ingestion PCL for boron is 4.9 mg/L for residential land use and 15 mg/L for commercial-industrial land use (TCEQ 2022). The concentrations of boron in all samples collected as part of the PDP-5 CCR groundwater monitoring program are lower than the TCEQ groundwater ingestion PCLs for both residential and commercial-industrial land use. As such, the boron concentrations observed in the CCR groundwater monitoring well samples are not considered elevated concentrations.

It should be noted that groundwater conditions in the vicinity of PDP-5 may be influenced by the closed and capped former pre-CCR Rule coal ash surface impoundments beneath and adjacent to PDP-5 (see Figure 1). PDP-5 is constructed on top of closed former ash impoundments (PDP-1, PDP-2, and PDP-3). The volume of CCR present in the closed impoundments beneath PDP-5 is approximately 1,920,000 cubic yards based on an AutoCAD Civil 3D measurement of the approximate extent of PDP-1, PDP-2, and PDP-3 and the approximate thickness of solids in the impoundments at the time PDP-5 was constructed (Golder 2021). The volume of CCR present in PDP-5 is approximately 21,000 cubic yards (Luminant 2022), which equates to about 1% of the volume of ash in the underlying closed impoundments. As a result, Detection Monitoring Program groundwater concentrations identified as SSIs may also be attributable to historical operation of the groundwater system at the Site.

4.0 CONCLUSION

SSIs were identified for boron, calcium, chloride, and sulfate during the 2022 Detection Monitoring Program sampling events at PDP-5. All observed SSIs are attributed to natural variation in groundwater quality due to the heterogeneity of the groundwater system and to potential effects from the closed former non-CCR Rule coal ash surface impoundments in the vicinity of PDP-5. The SSIs identified in the 2022 sample data are not considered evidence of a release from the CCR unit. In accordance with 30 T.A.C. §352.941(d), the owner will submit this ASD for TCEQ review within 90 days of the initial SSI determination and continue with the Detection Monitoring Program. Initiation of an Assessment Monitoring Program is not required at this time.

5.0 REFERENCES

Fogg, Graham E., Kaiser, W. R., Ambrose, M. L., 1991. The Wilcox Group and Carrizo Sand (Paleogene) in the Sabine Uplift Area, Texas: Ground-Water Hydraulics and Hydrochemistry. Publication of the Bureau of Economic Geology.

Golder Associates, Inc. (Golder), 2019. Affected Property Assessment Report Addendum, Martin Lake Steam Electric Station – PDP 5, Rusk County, Texas. October 18.

Golder, 2021. Alternate Liner Demonstration. Martin Lake Steam Electric Station, Rusk County Texas. November 30.

Luminant, 2022. 2022 Annual CCR Unit Inspection Report, Martin Lake Steam Electric Station, Permanent Disposal Pond 5.

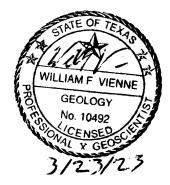
Pastor, Behling & Wheeler, LLC, 2014. Affected Property Assessment Report, Martin Lake Steam Electric Station, Permanent Disposal Pond Area, May.

Pastor, Behling & Wheeler, LLC, 2017. Coal Combustion Residual Rule Groundwater Monitoring System Certification, Martin Lake Steam Electric Station, PDP 5, Rusk County, Texas. October 16.

TCEQ, 2022. Tier 1 Protective Concentration Levels. March 1.

USEPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530/R-09-007, March.

WSP Golder, 2022. Coal Combustion Residual Rule Statistical Analysis Plan, Revision No. 1, Martin Lake Steam Electric Station, PDP 5, Rusk County, Texas. November 16.


WSP Golder, 2023. 2022 Annual Groundwater Monitoring and Corrective Action Report, Martin Lake Steam Electric Station PDP 5, Rusk County, Texas. January 31.

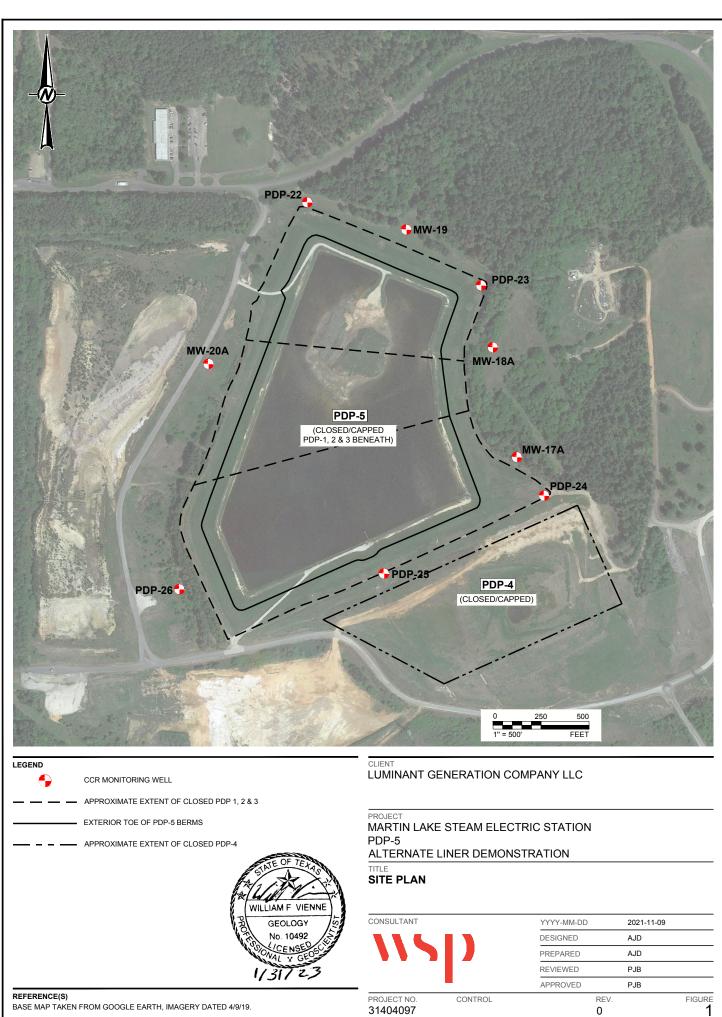
6.0 CLOSING

Thank you for the opportunity to assist on this project. Please contact me at william.vienne@wsp.com if you have any questions regarding this report.

WSP USA Inc.

William Vienne, P.G. Senior Hydrogeologist Assistant Vice President

7.0 PROFESSIONAL CERTIFICATION


This document and all attachments were prepared by WSP USA Inc. under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the detection monitoring requirements of the Federal CCR Program at 40 C.F.R. §257.94 and the State CCR Program at 30 T.A.C. §352.941.

hatra

Eric Pastor, P.E. Vice President WSP USA INC.

FIGURES

TABLES

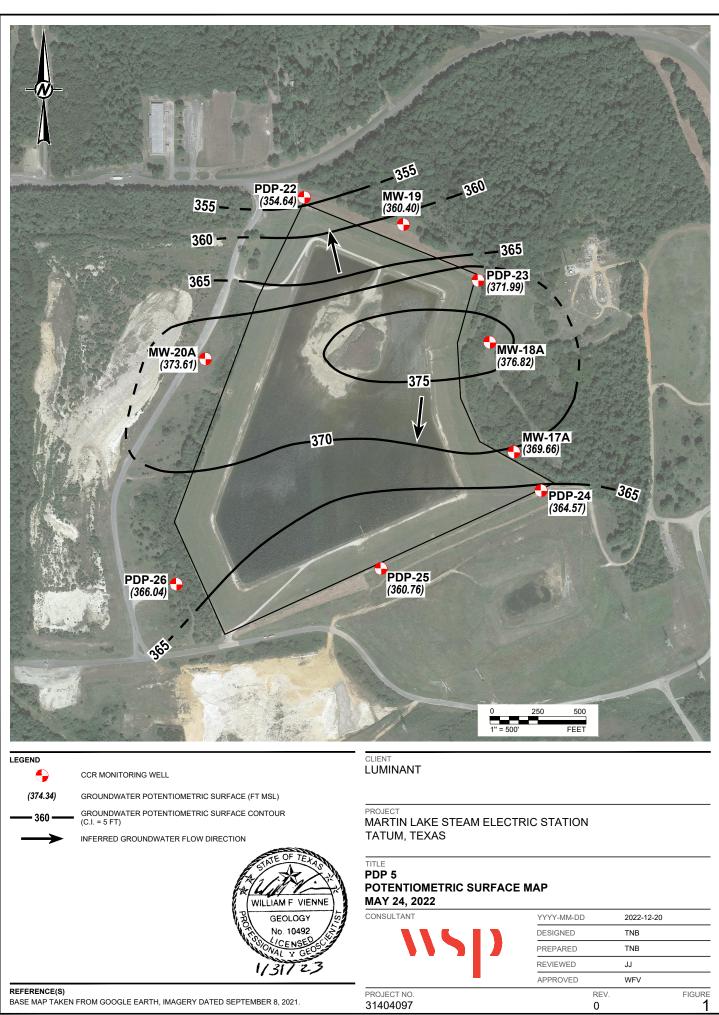
TABLE 1 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5

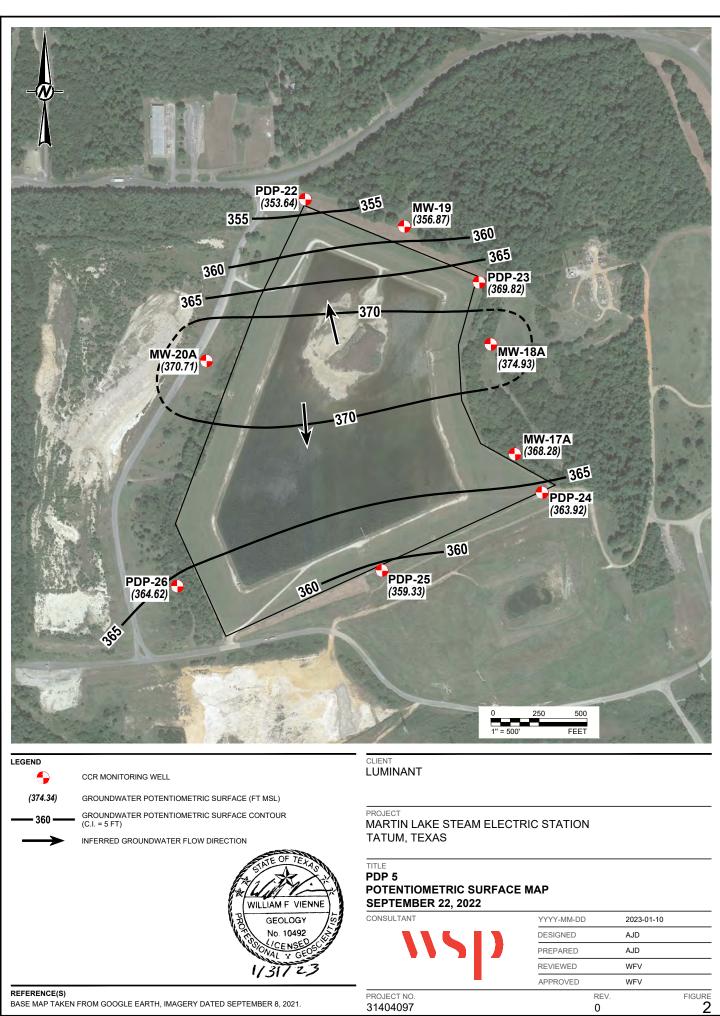
Sample	Date	В		Ca		CI		F		field pH		SO ₄		TD	S
Location	Commissi	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
Location	Sampled	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data
MW-17A	09/22/17	0.402 0.485 0.523 0.497 0.52 0.521 0.538 0.497 0.52 0.521 0.477 0.534 0.393 0.393			3.1		8.3		<0.1		6.78		31.2		111
	06/14/18				6.48		9.16		<0.1		6.87		45.9		129
	09/11/18				5.06		8.82		0.179 J		5.03		43.1		137
	05/13/19				4.88		9.18		<0.1	-	6.79	-	44.7		145
	11/07/19				5.05		8.81		<0.100		6.44	4	43.9		127
	05/19/20			6.73	5.09 5.76 6.21	8.74 0.4	<0.100	2.5	6.57	51.9	46.8	170	140		
	09/25/20		-			-	10.1		<0.100	9.19	6.57	4	47.7	-	133
	06/03/21						7.83	< 0.100		6.69	+	50.4	4	146	
	10/05/21				3.95	-	8.42	67	< 0.100		6.57	-	34.3	-	115
	05/25/22 06/06/22	-	0.487		6.27 5.71		8.67 10		<0.100		6.94		49.4 50		149 148
	06/06/22	-	0.452 0.386 0.0654	-	3.83		8.73	-	 <0.100	-	6.83		32.6		98
	09/22/22				1.04		5.27	l	<0.100		6.94		3.23		90 45
	06/14/18	-	0.0654		2	-	6.56		<0.1	1	6.92	+	3.48	157	45 71
	09/12/18		0.102		3.23		9.06		<0.1	-	5.69		4.82		150
	11/7/2018				0.20		0.00				0.00		4.02		100
MW-18A	re-sample		0.128			10.4		17 34 0.4							
	05/13/19		0.117		1.01		6.17		0.138 J	4.00	6.64	1	3.23 3.67 5.97		73
	11/07/19	0.20	0.127	3.1	11.5		6.34		<0.100	4.88	6.23	9.1			68
	05/19/20	1	0.225		1.54		7.09		<0.100	7.92	6.89	1			86
	09/25/20		0.188		1.66		8.13		<0.100		6.78		6.03		77
	06/03/21]	0.188 0.159		1.73		6.2	6.63 7.31 8.18	<0.100		6.69		6.20		76
	10/05/21				1.49		6.63		<0.100		6.59		5.73		76
	05/25/22		0.176		2.01		7.31		<0.100		6.52		6.83		86
	09/21/22		0.186		3.6		8.18		<0.100	-	6.59		11.7	-	89
MW-19	09/22/17		0.0677		2.74	-		5.36 24.4 65.1 5.22 26.8 49.3 0.512 5.84 14.3 19.5 62.9 47.3 55.4	<0.1	4.6 8.08	6.94		1.46 J	1,380	98
	06/14/18		0.577 0.243 0.429		133				0.216 J		6.78		328		758
	09/11/18				38	-	65.1		0.228 J		6.04		166		597
	11/7/2018			· · ·		57.7	5.22								
	re-sample	-			400		00.0		0.000.1		0.70		0.40		010
	05/13/19 11/08/19	-			122				0.229 J 0.189 J		6.72 6.87		349 310		813 844
	05/19/20	0.782 0.529 0.0724		237	237 77.8 1.49 94.6						6.91	672	310 1.02 J 160 336 323		85
	09/25/20		0.0724						<0.100 0.111 J		6.91	+ I			462
	09/23/20	1	0.412 0.56 0.495 0.711 0.574	-	140				0.352 J		6.75	t		1	751
	10/05/21	1			124				0.332 J 0.180 J	1	6.74	†		-	896
	05/25/22	1 1		1	189				0.100 J	1	6.79	†	346	1	1010
	06/07/22	1 1			147		55.4					t	313	1	970
	09/21/22	0.382	1	45		92.2		0.108 J	1	6.93	†	212	1	723	

TABLE 1 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5

Sample	Date	В		Ca	1	C	I	F		field	pН	SC	4	TD	s
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
Location	Sampled	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data
	09/22/17		0.0807		17.4		12.6		0.175 J		6.71		74.2		237
	02/21/18						10.7								
	re-sample							-		-	. = .	+	100	_	
	06/13/18 09/11/18		0.171		24 7.16		10.9 11		0.672		6.72	+	132		250 154
	05/13/19	-	0.141		37.4		10.2	-	0.235 J 0.731		4.70 6.81	+	39.1 178		328
	11/08/19		0.239		9.9		10.2		0.465	3.06	6.51	+	88		205
MW-20A	05/19/20	0.213	0.220	25.7	24	12.3	10.2	0.954	0.413	8.76	6.83	148	133	- 381	270
	09/25/20		0.107		8.94		12.6		0.132 J		6.68	1	54.3	-	162
	06/03/21		0.152		26.1		9.63		0.324		6.73	†	93.2		218
	10/05/21		0.0724		6.12		10.8		0.127 J		6.44]	32.8		139
	05/25/22		0.102		15.3		10.6		0.239 J		6.75	-	65.7	-	207
	06/07/22		0.0888		9.89		12.2	-		-		+	49.3	_	178
	09/22/22		0.0466		2.93 92.5		6.68 12.3		<0.100 0.321 J		6.48 6.98		1.42 J 178		84 558
	06/14/18		0.221		7.78		12.3		0.3213		6.63	+	186		491
	09/12/18		0.113		61.1		10.9		0.235 0.216 J	-	5.88	+	143		476
	05/13/19		0.158		98.2		10.1		0.303 J		6.86	1	184	-	615
	11/12/19		0.226		34.3		12.6		0.218 J	4.08	6.93	†	215		482
PDP-22	05/19/20	0.411	0.0646	306	54.9	32.7	1.06	1.07	<0.100	4.08	6.55	216	5.21	1,780	205
	09/25/20		0.206		25.1		12.7		0.128 J	0.00	6.73	-	186		398
	06/03/21		0.121		73.1		6.64	-	<0.100		6.52	4	118	-	415
	10/05/21		0.166		27.1		10.1		0.223 J		6.78	+	170	-	376
	05/25/22 09/21/22	-	0.137		16.4 14.9		9.92 10.4	-	0.183 J 0.106 J	-	8.82 6.42	+	104 112	-	289 280
	09/21/22		0.0463		2.34		4.48		0.100 J 0.147 J		6.77		1.47 J		111
	02/21/18											ł			
	re-sample				2.37										
	06/13/18		0.0357		2.29		6.21		<0.1		6.82	1	1.26 J		98
	09/11/18		0.0760		1.96		6.38		<0.1		5.32		1.52 J		98
	11/7/2018		0.0683												
	re-sample	0.0070			4.00	7 50	0.00	0.4	.0.4	3.38	0.00	0.07	1 00 1	140	400
PDP-23	05/13/19 11/12/19	0.0678	0.0628	2.0	1.89 2.14	7.52	6.98 4.98	0.4	<0.1 <0.100	8.45	6.68 6.72	3.27	1.28 J 1.41 J	143	103 93
	05/19/20	{ }	0.0675		2.14		4.98 6.86	1	<0.100	•	6.83	+	1.41 J 1.19 J	4	93
	09/25/20	1	0.0617		2.31		7.29	1	<0.100	1	6.74	1	<1.00	1	94
	06/03/21	1	0.0818	1	2.32		6.88	1	<0.100		6.57	†	1.42 J	1	101
	10/05/21	1	0.0661	1	2.38	1	6.58	1	<0.100	1	6.59	1	1.02 J	1	97
	05/25/22] [0.0441]	4.03	1	5.9		<0.100]	6.20	1	1.44 J]	110
	09/21/22		0.0663		2.53		6.72		<0.100		6.63	<u> </u>	1.18 J]	104

TABLE 1 APPENDIX III ANALYTICAL RESULTS MLSES PDP-5


Sample	Date	В		Ca	1	C		F		field	рН	SO	4	TD	S						
Laation	Commissional	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample						
Location	Sampled	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data						
	09/22/17		3.01		25.8		17.5		0.898		6.95		231		440						
	06/14/18		2.71		23.9		21.1		0.629		6.82		284		481						
	09/11/18		4.08		41.6		19.4		0.832		4.20		460		760						
	05/13/19		3.23		23		21		0.871		6.95		300		537						
	11/12/19		3		21.9		20.6		0.751		6.87	-	295		520						
PDP-24	1/12/2019 DU	4.92	2.97	45.9	22.2	22.6	20.5	1.03	0.744	1.33	6.87	533	300	894	504						
	05/19/20		3.17		21.4		21		0.61	9.97	6.79	+	286	-	512						
	09/25/20 06/03/21		4.04 3.56		40.7 26.4		19.6 19.3		0.776		6.83 6.57	-	445 350		699 615						
	10/05/21	-	4.24	-	26.4 46.9		19.3		0.934	-	6.72	•	432	-	681						
	05/25/22	-	4.24		40.9		17.6		0.782	-	6.72	ł	432		736						
	09/21/22		4.23		46.7		17.8		0.771		6.72	Ŧ	456		730						
	09/22/17		0.133		36.8		130		0.157 J		6.81		89.1		481						
	06/14/18		0.119		40.4		111		<0.1		6.78		73.4		439						
	09/11/18		0.167		36.2		135		0.115 J		5.87	İ	90.3		469						
	11/7/2018		0.440									Ī									
	re-sample		0.142				-														
	05/13/19		0.144		44.4		108		0.121 J		6.84	I	69		469						
PDP-25	11/12/19	0.136	0.184	41.3	38.6	197	117	0.4	<0.100	4.65	6.82	118	71.4	705	454						
	05/19/20	0.136	0.136	0.136	0.130	0.130	0.130	0.130	0.202		53.7		105		<0.100	7.93	6.61		62.2		442
	09/25/20		0.174	-	46.3		123		<0.100	-	6.77	+	67.5	-	445						
	06/03/21		0.234		45.2	_	-			101	-	0.236 J		6.78	ł	61.2		431			
	10/05/21 05/25/22		0.159 0.151		40.4		115 102		<0.100	_	6.73 6.64	+	62.7		427 454						
	5/25/22 DUP	-	0.151		47.5 48.8		102		<0.100 <0.100	-	6.64	ł	58.4 58.2	-	454 448						
	09/21/22		0.154		52.8		102		<0.100		6.52	Ŧ	61.6		440						
	09/22/17		0.0343		2.32		5.24		0.157 J		6.84		5.88		107						
	06/14/18		0.0225 J		2.93		4.8		<0.1		6.89		4.27		100						
	09/12/18		0.0371		2.37		4.88		<0.1		6.07	†	2.66 J		107						
	05/13/19		0.0528		1.9		4.59		0.217 J		6.86	†	2.7 J		106						
	11/12/19		0.0622		2.25		4.64		0.122 J		6.77	Ī	2.1 J		102						
	05/19/20		0.0538		2.09		4.52		<0.100		6.64		2.1 J		108						
PDP-26	09/25/20	0.111	0.0549	4.74	2.71	14.6	5.07	0.577	<0.100	5.35	6.83	64.6	1.91	438	92						
FDF-20	06/03/21	0.111	0.0516	4.74	2.37	14.0	4.05	0.577	<0.100	7.57	6.84	04.0	2.18 J	430	104						
	6/3/21 DUP		0.0635		2.23		4.05		<0.1	4	6.84	ļ	2.05 J		107						
	10/05/21		0.0486		3.85		4.48		0.194 J	4	6.74		3.28	4	104						
	10/5/21 DUP		0.0432		3.58		4.24		0.192 J	4	6.74	ļ l	2.49 J	4	103						
	05/25/22		0.0424		2.62		4.08		0.109 J	4	6.73		2.46 J	4	111						
	09/22/22		0.05		2.61		4.4		< 0.100	4	6.47		2.08 J	4	92						
	9/22/22 DUP		0.0557		2.99		4.36		<0.100		6.47		2.15 J		104						


Notes:

All concentrations in mg/L. pH in standard units.
 J - concentration is below sample quantitation limit; result is an estimate.
 Prediction limits were developed using procedures described in the CCR Statistical Analysis Plan (WSP Golder 2022).

ATTACHMENT 1

2022 GROUNDWATER POTENTIOMETRIC SURFACE MAPS

-

APPENDIX B

LABORATORY ANALYTICAL REPORTS

May 31, 2023

Jacob Jarvis WSP-Golder 1601 S. Mopac Expy, Suite 325B Austin, Texas 78746 TEL: (512) 671-3434 FAX RE: Luminant-MLSES PDP CCR

Order No.: 2305281

Dear Jacob Jarvis:

DHL Analytical, Inc. received 10 sample(s) on 5/22/2023 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2305281	10
WorkOrderSampleSummary 2305281	
PrepDatesReport 2305281	
AnalyticalDatesReport 2305281	
Analytical Report 2305281	
AnalyticalQCSummaryReport 2305281	
MQLSummaryReport 2305281	

						arg.		manth	Å	
A	N	A	Ĭ.,,	Y	nijo.		C,	А	Ĭ.,	

EMAIL:

CLIENT: WSP

PHONE:

ADDRESS: AVSTIN, TX

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OC-CUSTODY

Web: www.dhlanalytical.com

Email: login@dhlanalytical.com 5-19-23

31404097,019

DATE:

PO#:

LAB USE ONLY			
DHL WORKORDSR #:	23	05	281

PAGE

OF

DEDIECT LOCATION OF NAME JUM AUT - AICEC 000 000

DATA REPORTED TO: 🔍	ACOR	3 JAR	VIS		·····		OJE		UCF	ALIC		JR	NAI		,V¶	'nη	(KI	٧ï	ľ	123	E	2	7	P		CI	14	~			
ADDITIONAL REPORT CO	PIES TO	D:				CLI	EN	T PR	OJE	CT #	‡_3	114	04	109-	٦, ٢	21	9			(OLI	.EC1	OR	: 、)0 H	IN	в	RAY	170	'N	
Authorize 5% surcharge for TRRP report?	Lab	W=WATE L=LIQUID	R	SE=SE P=PAI	DIMENT NT			SER				60]	D 1006 🗆				T 8270 🗆	0 625.1 🗆													
🗆 Yes 🛛 No	Use Only	S=SOIL SO=SOLID)	SL=SL	UDGE	Containers	H ₃ PO₄		Zn Acetat	RESERVE	ANALYSES	[METHOD 82	1006 🗆 HOL	0 8015 524 1	0C 625.1 []	D PAH D	10 0-P PES	3 🗆 PCB 8270		200.8 🗆 DISS.		056 🗆 📃	C 🗆 PEST 🗆 H	RCRA 8 🗆 TX-	AS 🗆 OIL&GRI	AOIST 🗆 CYAI	ITYII				
Field Sample I.D.	DHL Lab #	Collection Date	Collection Time	Matrix	Container Type	# of	HCL []	HNO3		ICE 🕅 UNPRESERVED 🕅	AN/	ВТЕХ 🗆 МТВЕ 🗆 [МЕТНОВ 8260]	TPH 1005 🗆 TPH 1006 🗆 HOLD 1006 🗆	GRO 8015 C DRO 8015 C	VOC 0200 U VOC 024.1 U SVOC 8270 U SVOC 625.1 D	РАН 8270 🗆 НОГО РАН 🗆	PEST 8270	PCB 8082 🗆 608.3 🗆 PCB 8270 🗆 625.1 🗆	HERB 8321 🗆 T PHOS 🗆 AMMONIA 🗆	METALS 6020		ANIONS 300 0 9056 0		TCLP-METALS 🗆 RCRA 8 🗆 TX-11 🗆 Pb 🗆	RCI 🗆 IGN 🗆 DGAS 🗆 OIL&GREASE 🗆	TDS 🗆 TSS 🗆 % MOIST 🗆 CYANIDE 🗆	111 YIDNALL	,		FIELD NOT	TES
MW-17A		5-18-23	0735	W.	P	2 2		X		X																	X				
PDP-24	02		0820		ρ			X		X													 				거	\perp	\perp		
PDP-25	03		0905	W	P	2		X		ΙX											\perp		<u> </u>				시	\perp	4		
PDP-26 MW-20A PDP-22	04		1010	W	<u> </u>	2		X X		X				_	_		-				_		_		<u> </u>		거	+			
DDG 20H	05	<u> </u>	1100	W	P P	2	_	$\frac{\lambda}{\lambda}$		X X			-				-	<u> </u>		_			╂──				귓	+	╋		
MW-19	06		205	W	P	2 2		⊹		$\overline{\mathbf{b}}$					_	-						+					쉿	+	+		
PDP-23	07 08		1255	$\widetilde{\mathcal{W}}$	P	2	_	X X		XXXX				_		-				-+		-	┢				X	+	+		
DVP-1	09		1345	Ŵ	þ	2	+	X	+	恔			\dashv		+		+	\vdash				+	┼─				$\widetilde{\mathbf{X}}$	╋	+		
MW-18A	10	1	1450	W	·ρ	2		X		X					+		1				+	\top	╞	-			Ź	+	+		
		X	, 100					*1		1							1				╧	\top	╞					+	+		
	:																						\vdash					1	T		
	:																														
		l.			3 ⁴ 1																										
Relinquished By: (Sign		6.	DATE/TIME	17			7	Ņ						OUN T FO						e on Ing 1		ې (°C)):	, ,	2. 2	şê	2	т	HER	хмо #: >§	
Relinquished By: (Sign)			DATE/TIME		Receiv	/ed b	۷	-	~	RL	JSH-					2 DA							S ON	I ICE	E AN	ID JU	JST (ED? (YES) N	
Jellep		3/3	20/23	1:30	p.m.d	4	5							-3 DA			_													ΤΑϹΤ 🗆 ΝΟΤ	
Relinquished By: (Sign)	:		DATE/TIME		Receit	ied b	V:			DL	NOI JE D	RM/ DATE	ΔL)		DTHE	ER [CAI	RRIE	R: □	LSO	20	EDE	XC] UF	PS [] CO	URIE	R □] HAND DELIV	ERED

DHL COC REV 4 | MAR 2023

Eric Lau

From: John DuPont <dupont@dhlanalytical.com> Sent: Tuesday, May 28, 2019 11:35 AM To: Eric Lau <login@dhlanalytical.com> Subject: FW: CCR Analysis

<u>Appendix III Parameters:</u> Metals (Ca and B) Anions (Cl, F, and SO4) TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl) Ra-226 Ra-228

	Sample	Receipt Chec	klist		
Client Name: WSP-Golder			Date Receiv	red: 5/22/2023	
Work Order Number: 2305281			Received by	CF	
5					
Checklist completed by:	5/22/202	3	Reviewed b	v: 62)	5/22/2023
Signature	Date		·	Initials	Date
	Carrier name:	FedEx 1day			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/coo	ler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	l received?	Yes 🖌	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🖌	No 🗌		
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vials submitte	ed 🗹 NA 🗌
Water - pH<2 acceptable upon receipt?		Yes 🗹	Νο		13171
		Adjusted? No	9	Checked by	<u>(</u>
Water - ph>9 (S) or ph>10 (CN) acceptable up	on receipt?	Yes	No 🗌	NA 🗹 LOT #	
		Adjusted?		Checked by	
Container/Temp Blank temperature in complian	nce?	Yes 🗹	No 🗌		
Cooler # 1					
Temp °C 3.8					
Seal Intact Y	nonte contine balavy				
Any No response must be detailed in the comm					-
Client contacted:	Date contacted:		Per	son contacted:	
Contacted by:	Regarding:				
Comments:					
Corrective Action:					

Lad	orat	tory Review Checklist: Reportable Data					
Proje	ect Na	me: Luminant-MLSES PDP CCR LRC D	Pate: 5/31/2023				
Revie	ewer I	Name: Angie O'Donnell Labora	ntory Work Order: 2305281				
Prep	Batcl	h Number(s): See Prep Dates Report Run B	atch: See Analytical Dates Report				
#1	A ²	Description		Yes	No	NA ³ NF	4 ER# ⁵
		Chain-of-Custody (C-O-C)					
R1	OI	1) Did samples meet the laboratory's standard conditions of sample	acceptability upon receipt?	X			R1-01
		2) Were all departures from standard conditions described in an exc				Χ	111 01
R2	OI	Sample and Quality Control (QC) Identification					
		1) Are all field sample ID numbers cross-referenced to the laborato	ry ID numbers?	X			
		2) Are all laboratory ID numbers cross-referenced to the correspond		Χ			
R3	OI	Test Reports					
		1) Were all samples prepared and analyzed within holding times?		Χ			
		2) Other than those results < MQL, were all other raw values brack	eted by calibration standards?	Χ			
		3) Were calculations checked by a peer or supervisor?		Χ			
		4) Were all analyte identifications checked by a peer or supervisor?		Χ			
		5) Were sample detection limits reported for all analytes not detect		Χ			
		6) Were all results for soil and sediment samples reported on a dry				X	
		7) Were % moisture (or solids) reported for all soil and sediment sa				X	
		8) Were bulk soils/solids samples for volatile analysis extracted with	h methanol per EPA Method 5035?			X	
D4	0	9) If required for the project, TICs reported?				Χ	
R4	0	Surrogate Recovery Data				v	
		 Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboration 	notomy OC limits?			X X	
R5	OI	Test Reports/Summary Forms for Blank Samples	ratory QC minus?			Λ	
КJ	01	1) Were appropriate type(s) of blanks analyzed?		X			
		2) Were blanks analyzed at the appropriate frequency?		A X			
		3) Where method blanks taken through the entire analytical process	including preparation and if				
		applicable, cleanup procedures?	, menualing preparation and, if	Х			
		4) Were blank concentrations < MDL?		X			
		5) For analyte(s) detected in a blank sample, was the concentration.	unadjusted for sample specific			X 7	
		factors, in all associated field samples, greater than 10 times the co				X	
R6	OI	Laboratory Control Samples (LCS):	*				
		1) Were all COCs included in the LCS?		Χ			
		2) Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?	Χ			
		3) Were LCSs analyzed at the required frequency?		Χ			
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory		Χ			
		5) Does the detectability data document the laboratory's capability	to detect the COCs at the MDL used	X			
		to calculate the SDLs?					
	<u>.</u>	6) Was the LCSD RPD within QC limits (if applicable)?		Χ			
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data	11(CD2	V			
		1) Were the project/method specified analytes included in the MS a	nd MSD?	X			-
		2) Were MS/MSD analyzed at the appropriate frequency?	C 1:::-9	X	v		D7.03
		 3) Were MS (and MSD, if applicable) %Rs within the laboratory Q 4) Were MS/MSD RPDs within laboratory QC limits? 	C limits?	X	X		R7-03
R8	OI	Analytical Duplicate Data		Λ			
Ко	01	1) Were appropriate analytical duplicates analyzed for each matrix)	X			
		2) Were analytical duplicates analyzed to each matrix 2) Were analytical duplicates analyzed at the appropriate frequency		A X			
		3) Were RPDs or relative standard deviations within the laboratory					
R9	OI	Method Quantitation Limits (MQLs):	QC mints:	Λ			
	51	1) Are the MQLs for each method analyte included in the laborator	v data package?	X			
		2) Do the MQLs for each interior analyte included in the factorial 2) Do the MQLs correspond to the concentration of the lowest non-		X			1
		3) Are unadjusted MQLs and DCSs included in the laboratory data		X			
R10	OI	Other Problems/Anomalies	r8				
- •		1) Are all known problems/anomalies/special conditions noted in th	nis LRC and ER?	X			
		2) Was applicable and available technology used to lower the SDL					1
		affects on the sample results?		Х			
		3) Is the laboratory NELAC-accredited under the Texas Laboratory	Accreditation Program for the	v			
		analytes, matrices and methods associated with this laboratory data		X		1	

Labo	orat	tory Name: DHL Analytical, Inc.						
Labo	orat	tory Review Checklist (continued): Supporting D	ata					
Projec	ct Na	me: Luminant-MLSES PDP CCR LRC Da	te: 5/31/2023					
Review	wer]	Name: Angie O'Donnell Laborat	ory Work Order: 2305281					
Prep I	Batc	h Number(s): See Prep Dates Report Run Bat	ch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial Calibration (ICAL)						
		1) Were response factors and/or relative response factors for each anal	vte within OC limits?	X				
		2) Were percent RSDs or correlation coefficient criteria met?		X				
		3) Was the number of standards recommended in the method used for	all analytes?	X				
		4) Were all points generated between the lowest and highest standard		X				
		5) Are ICAL data available for all instruments used?		X				
		6) Has the initial calibration curve been verified using an appropriate s	second source standard?	X				
S2		Initial and Continuing calibration Verification (ICCV and CCV)						
~-		blank (CCB):	and containing campion					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-requir	ed OC limits?	X				
		3) Was the ICAL curve verified for each analyte?		X				
		4) Was the absolute value of the analyte concentration in the inorganic	$CCB \leq MDL^2$	X				
S3		Mass Spectral Tuning:						
50		1) Was the appropriate compound for the method used for tuning?		Х				
		2) Were ion abundance data within the method-required QC limits?		X				
S4		Internal Standards (IS):		Λ				
54		1) Were IS area counts and retention times within the method-required	1 OC limits?	X				
S 5		Raw Data (NELAC Section 5.5.10)	r çe mints:	Λ				
55		1) Were the raw data (for example, chromatograms, spectral data) revi	ewed by an analyst?	X				
		2) Were data associated with manual integrations flagged on the raw of		X				
S6		Dual Column Confirmation	lata :	Λ				
50	0	1) Did dual column confirmation results meet the method-required QC	¹ 9			X		
S7	0	Tentatively Identified Compounds (TICs):				Λ		
57	0	1) If TICs were requested, were the mass spectra and TIC data subject	to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:	to appropriate cheeks.			Λ		
50	1	1) Were percent recoveries within method QC limits?		X				
S 9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standard A	dditions	Λ				
57	1							
		1) Were percent differences, recoveries, and the linearity within method?	the QC limits specified in the	X				
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Χ				
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		Χ				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficiency	tests or evaluation studies?	Χ				
S12		Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained fi	om other appropriate sources?	Χ				
S13		Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification documente	d?	Χ				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 - Appendi	x C?	Χ				
		2) Is documentation of the analyst's competency up-to-date and on file		Χ				
S15		Verification/Validation Documentation for Methods (NELAC Cha						
		1) Are all the methods used to generate the data documented, applicable?	verified, and validated, where	X				
S16		Laboratory Standard Operating Procedures (SOPs):						
510	U							
		1) Are laboratory SOPs current and on file for each method performed	!?	X				

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

flowment Signature

05/31/23 Date

CLIENT:WSP-GolderProject:Luminant-MLSES PDP CCRLab Order:2305281

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis

Exception Report R1-01

The samples were received and log-in performed on 5/20/2023. A total of 10 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Anions Analysis, the recovery of one anion (each) for the Matrix Spike and Matrix Spike Duplicate(s) (2305279-01 and 2305281-07 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These anions were within method control limits in the associated LCS. No further corrective action was taken.

_

Date: 31-May-23

CLIENT: Project: Lab Order:	WSP-Golder Luminant-MLSES P 2305281	DP CCR	Work Order Sample	Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2305281-01	MW-17A		05/18/23 07:35 AM	5/20/2023
2305281-02	PDP-24		05/18/23 08:20 AM	5/20/2023
2305281-03	PDP-25		05/18/23 09:05 AM	5/20/2023
2305281-04	PDP-26		05/18/23 10:10 AM	5/20/2023
2305281-05	MW-20A		05/18/23 11:00 AM	5/20/2023
2305281-06	PDP-22		05/18/23 12:05 PM	5/20/2023
2305281-07	MW-19		05/18/23 12:55 PM	5/20/2023
2305281-08	PDP-23		05/18/23 01:45 PM	5/20/2023
2305281-09	DUP-1		05/18/23 01:45 PM	5/20/2023
2305281-10	MW-18A		05/18/23 02:50 PM	5/20/2023

Lab Order:2305281Client:WSP-Golder

Project: Luminant-MLSES PDP CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2305281-01A	MW-17A	05/18/23 07:35 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-01B	MW-17A	05/18/23 07:35 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-17A	05/18/23 07:35 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-17A	05/18/23 07:35 AM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-02A	PDP-24	05/18/23 08:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
	PDP-24	05/18/23 08:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-02B	PDP-24	05/18/23 08:20 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-24	05/18/23 08:20 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-24	05/18/23 08:20 AM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-03A	PDP-25	05/18/23 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
	PDP-25	05/18/23 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-03B	PDP-25	05/18/23 09:05 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-25	05/18/23 09:05 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-25	05/18/23 09:05 AM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-04A	PDP-26	05/18/23 10:10 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-04B	PDP-26	05/18/23 10:10 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-26	05/18/23 10:10 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-26	05/18/23 10:10 AM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-05A	MW-20A	05/18/23 11:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-05B	MW-20A	05/18/23 11:00 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-20A	05/18/23 11:00 AM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-20A	05/18/23 11:00 AM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-06A	PDP-22	05/18/23 12:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
	PDP-22	05/18/23 12:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-06B	PDP-22	05/18/23 12:05 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-22	05/18/23 12:05 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-22	05/18/23 12:05 PM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-07A	MW-19	05/18/23 12:55 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309

Page 1 of 2

PREP DATES REPORT

•J••••							
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2305281-07A	MW-19	05/18/23 12:55 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-07B	MW-19	05/18/23 12:55 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-19	05/18/23 12:55 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-19	05/18/23 12:55 PM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-08A	PDP-23	05/18/23 01:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
2305281-08B	PDP-23	05/18/23 01:45 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-23	05/18/23 01:45 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	PDP-23	05/18/23 01:45 PM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
305281-09A	DUP-1	05/18/23 01:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
305281-09B	DUP-1	05/18/23 01:45 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	DUP-1	05/18/23 01:45 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	DUP-1	05/18/23 01:45 PM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269
2305281-10A	MW-18A	05/18/23 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/24/23 07:43 AM	110309
305281-10B	MW-18A	05/18/23 02:50 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-18A	05/18/23 02:50 PM	Aqueous	E300	Anion Preparation	05/22/23 09:37 AM	110263
	MW-18A	05/18/23 02:50 PM	Aqueous	M2540C	TDS Preparation	05/22/23 11:17 AM	110269

Project: Luminant-MLSES PDP CCR

Lab Order:2305281Client:WSP-Golder

Project: Luminant-MLSES PDP CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2305281-01A	MW-17A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:45 AM	ICP-MS5_230525A
2305281-01B	MW-17A	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 02:46 PM	IC2_230522A
	MW-17A	Aqueous	E300	Anions by IC method - Water	110263	1	05/22/23 11:16 PM	IC2_230522A
	MW-17A	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-02A	PDP-24	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	10	05/26/23 11:26 AM	ICP-MS4_230526A
	PDP-24	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:48 AM	ICP-MS5_230525A
2305281-02B	PDP-24	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 03:03 PM	IC2_230522A
	PDP-24	Aqueous	E300	Anions by IC method - Water	110263	1	05/22/23 11:33 PM	IC2_230522A
	PDP-24	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-03A	PDP-25	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:50 AM	ICP-MS5_230525A
	PDP-25	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	10	05/26/23 11:28 AM	ICP-MS4_230526A
2305281-03B	PDP-25	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 03:20 PM	IC2_230522A
	PDP-25	Aqueous	E300	Anions by IC method - Water	110263	1	05/22/23 11:50 PM	IC2_230522A
	PDP-25	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-04A	PDP-26	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:53 AM	ICP-MS5_230525A
2305281-04B	PDP-26	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 03:37 PM	IC2_230522A
	PDP-26	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 12:07 AM	IC2_230522A
	PDP-26	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-05A	MW-20A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:40 AM	ICP-MS5_230525A
2305281-05B	MW-20A	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 03:54 PM	IC2_230522A
	MW-20A	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 12:24 AM	IC2_230522A
	MW-20A	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-06A	PDP-22	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:55 AM	ICP-MS5_230525A
	PDP-22	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	5	05/26/23 11:30 AM	ICP-MS4_230526A
2305281-06B	PDP-22	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 04:11 PM	IC2_230522A
	PDP-22	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 12:41 AM	IC2_230522A
	PDP-22	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-07A	MW-19	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	10	05/26/23 11:32 AM	ICP-MS4 230526A

Page 1 of 2

Lab Order: 2305281 **Client:**

WSP-Golder

Project: Luminant-MLSES PDP CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2305281-07A	MW-19	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 10:58 AM	ICP-MS5_230525A
2305281-07B	MW-19	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 04:28 PM	IC2_230522A
	MW-19	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 12:58 AM	IC2_230522A
	MW-19	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-08A	PDP-23	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 11:00 AM	ICP-MS5_230525A
2305281-08B	PDP-23	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 06:27 PM	IC2_230522A
	PDP-23	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 02:23 AM	IC2_230522A
	PDP-23	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-09A	DUP-1	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 11:03 AM	ICP-MS5_230525A
2305281-09B	DUP-1	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 06:44 PM	IC2_230522A
	DUP-1	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 02:40 AM	IC2_230522A
	DUP-1	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C
2305281-10A	MW-18A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	110309	1	05/25/23 11:05 AM	ICP-MS5_230525A
2305281-10B	MW-18A	Aqueous	E300	Anions by IC method - Water	110263	10	05/22/23 07:01 PM	IC2_230522A
	MW-18A	Aqueous	E300	Anions by IC method - Water	110263	1	05/23/23 02:57 AM	IC2_230522A
	MW-18A	Aqueous	M2540C	Total Dissolved Solids	110269	1	05/22/23 04:35 PM	WC_230522C

CLIENT:	WSP-Golder	Client Sample ID: MW-17A
Project:	Luminant-MLSES PDP CCR	Lab ID: 2305281-01
Project No:	31404097.019	Collection Date: 05/18/23 07:35 AM
Lab Order:	2305281	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.504	0.0100	0.0300	mg/L	1	05/25/23 10:45 AM
Calcium	5.89	0.100	0.300	mg/L	1	05/25/23 10:45 AM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: RA
Chloride	9.67	0.300	1.00	mg/L	1	05/22/23 11:16 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	05/22/23 11:16 PM
Sulfate	52.8	1.00	3.00	mg/L	1	05/22/23 11:16 PM
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	149	10.0	10.0	mg/L	1	05/22/23 04:35 PM

0 110	ND Net Detected at the CDI
Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: PDP-24						
Project:	Luminant-MLSES PDI	P CCR Lab ID: 2305281-02						
Project No:	31404097.019	Collection Date: 05/18/23 08:20 AM						
Lab Order:	2305281	Matrix: AQUEOUS						
Analyses		Result	SDL	RL	Qual (J nits	DF	Date Analyzed
TOTAL METAL	S: ICP-MS - WATER		SW602	20B				Analyst: SP
Boron		4.02	0.100	0.300	m	g/L	10	05/26/23 11:26 AM
Calcium		41.6	1.00	3.00	m	g/L	10	05/26/23 11:26 AM
ANIONS BY IC	METHOD - WATER		E30	0				Analyst: RA
Chloride		18.2	0.300	1.00	m	g/L	1	05/22/23 11:33 PM
Fluoride		0.729	0.100	0.400	m	g/L	1	05/22/23 11:33 PM
Sulfate		411	10.0	30.0	m	g/L	10	05/22/23 03:03 PM
TOTAL DISSO	VED SOLIDS M2540C Analyst: JS						Analyst: JS	
Total Dissolved	I Solids (Residue,	720	10.0	10.0	m	g/L	1	05/22/23 04:35 PM

Total Dissolved Solids (Residue, Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder		Client Sample ID: PDP-25					
Project:	Luminant-MLSES PD	nant-MLSES PDP CCR Lab ID: 2305281-03						
Project No:	31404097.019	Collection Date: 05/18/23 09:05 AM						
Lab Order:	2305281	Matrix: AQUEOUS						
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
TOTAL METAL	LS: ICP-MS - WATER		SW6020B			Analyst: SP		
Boron		0.266	0.0100	0.0300	mg/L	1	05/25/23 10:50 AN	
Calcium		56.3	1.00	3.00	mg/L	10	05/26/23 11:28 AM	
	METHOD - WATER		E300			Analyst: RA		
ANIONS BY IC				10.0	mg/L	10	05/22/23 03:20 PN	
ANIONS BY IC Chloride		107	3.00	10.0	iiig/ L	10	03/22/23 03.20 F IV	
		107 <0.100	3.00 0.100	0.400	mg/L	10		
Chloride					-		05/22/23 03:20 PN 05/22/23 11:50 PN 05/22/23 11:50 PN	

10.0

10.0

mg/L

1

05/22/23 04:35 PM

478

Total Dissolved Solids (Residue, Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Analyst: JS

1

05/22/23 04:35 PM

CLIENT:	WSP-Golder	WSP-Golder Client Sample ID					6	
Project:	Luminant-MLSES	PDP CCR	DP CCR Lab ID: 2305281-04					
Project No:	31404097.019		Collection Date: 05/18/23 10:10 AM Matrix: AQUEOUS					
Lab Order:	2305281							
Analyses		Result	SDL	RL	Oual	Units	DF	Date Analyzed
Analyses		Kesuit	SDL	KL	Quai	Units	Dr	Date Analyzeu
•	-S: ICP-MS - WATER	Kesuit	SDL SW60		Quai	Units	Dr	Analyst: SP
·	-S: ICP-MS - WATER	0.0965			Quai	mg/L	1	Analyst: SP
TOTAL METAL	-S: ICP-MS - WATER		SW60	20B	Quar			·
TOTAL METAL Boron Calcium	-S: ICP-MS - WATER	0.0965	SW60 0.0100	20B 0.0300 0.300	Quai	mg/L	1	Analyst: SP 05/25/23 10:53 AM
TOTAL METAL Boron Calcium		0.0965	SW60 0.0100 0.100	20B 0.0300 0.300	Quai	mg/L	1	Analyst: SP 05/25/23 10:53 AN 05/25/23 10:53 AN
TOTAL METAL Boron Calcium ANIONS BY IC		0.0965	SW60 0.0100 0.100 E30	20B 0.0300 0.300	Quar	mg/L mg/L	1	Analyst: SP 05/25/23 10:53 AN 05/25/23 10:53 AN Analyst: RA

M2540C

10.0

mg/L

10.0

TOTAL DISSOLVED SOLIDS Total Dissolved Solids (Residue, 101 Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Analyses	Result	SDL	RL Qual Units DF
Lab Order:	2305281		Matrix: AQUEOUS
Project No:	31404097.019		Collection Date: 05/18/23 11:00 AM
Project:	Luminant-MLSES PDP CCR		Lab ID: 2305281-05
CLIENT:	WSP-Golder		Client Sample ID: MW-20A

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.0711	0.0100	0.0300	mg/L	1	05/25/23 10:40 AM
Calcium	9.65	0.100	0.300	mg/L	1	05/25/23 10:40 AM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	11.3	0.300	1.00	mg/L	1	05/23/23 12:24 AM
Fluoride	<0.100	0.100	0.400	mg/L	1	05/23/23 12:24 AM
Sulfate	38.9	1.00	3.00	mg/L	1	05/23/23 12:24 AM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	169	10.0	10.0	mg/L	1	05/22/23 04:35 PM

Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: PDP-22						
Project:	Luminant-MLSES PD	Int-MLSES PDP CCR Lab ID: 2305281-06 97.019 Collection Date: 05/18/23 12:05 PM						
Project No:	31404097.019							
Lab Order:	2305281		Matrix: AQUEOUS					
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed	
TOTAL METAL	S: ICP-MS - WATER		SW6020B			Analyst: SP		
Boron		0.160	0.0100	0.0300	mg/L	1	05/25/23 10:55 AN	
Calcium		39.1	0.500	1.50	mg/L	5	05/26/23 11:30 AN	
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: RA	
Chloride		10.1	0.300	1.00	mg/L	1	05/23/23 12:41 AM	
Fluoride		<0.100	0.100	0.400	mg/L	1	05/23/23 12:41 AN	
Sulfate		109	1.00	3.00	mg/L	1	05/23/23 12:41 AM	
TOTAL DISSO	LVED SOLIDS M2540C Analyst: JS						Analyst: JS	
Total Dissolved	I Solids (Residue,	379	10.0	10.0	mg/L	1	05/22/23 04:35 PM	

Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Analyst: JS

05/22/23 04:35 PM

CLIENT:	WSP-Golder		Client Sample ID: MW-19							
Project:	Luminant-MLSES PD	P CCR			La	b ID: 23052	81-07			
Project No:	31404097.019	Collection Date: 05/18/23 12:55 PM								
Lab Order:	2305281		Matrix: AQUEOUS							
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed		
·										
•	_S: ICP-MS - WATER		SW60	20B				Analyst: SP		
	S: ICP-MS - WATER	0.788	SW60 0.0100	20B 0.0300		mg/L	1	• -		
TOTAL METAL	-S: ICP-MS - WATER	0.788 173				mg/L mg/L	1 10	Analyst: SP 05/25/23 10:58 AM 05/26/23 11:32 AM		
TOTAL METAL Boron Calcium	-S: ICP-MS - WATER		0.0100	0.0300 3.00		0	•	05/25/23 10:58 AM		
TOTAL METAL Boron Calcium			0.0100 1.00	0.0300 3.00		0	•	05/25/23 10:58 AN 05/26/23 11:32 AN		
TOTAL METAL Boron Calcium ANIONS BY IC		173	0.0100 1.00 E30	0.0300 3.00	J	mg/L	10	05/25/23 10:58 AM 05/26/23 11:32 AM Analyst: RA		

TOTAL DISSOLVED SOLIDSM2540CTotal Dissolved Solids (Residue,
Filterable)72410.010.0mg/L1

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder			Clier	t Sample ID: PDP-2.	3	
Project:	Luminant-MLSES F	DP CCR			Lab ID: 230528	31-08	
Project No:	31404097.019			Co	llection Date: 05/18/2	23 01:45 PI	М
Lab Order:	2305281				Matrix: AQUE	OUS	
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METAL	S: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron		0.0976	0.0100	0.0300	mg/L	1	05/25/23 11:00 AM
Calcium		2.88	0.100	0.300	mg/L	1	05/25/23 11:00 AM

ANIONS BY IC METHOD - WATE	R	E3	00				Analyst: RA
Chloride	6.65	0.300	1.00		mg/L	1	05/23/23 02:23 AM
Fluoride	<0.100	0.100	0.400		mg/L	1	05/23/23 02:23 AM
Sulfate	1.35	1.00	3.00	J	mg/L	1	05/23/23 02:23 AM
TOTAL DISSOLVED SOLIDS		M254	40C				Analyst: JS
Total Dissolved Solids (Residue,	115	10.0	10.0		mg/L	1	05/22/23 04:35 PM

Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

AQUEOUS

05/18/23 01:45 PM

DUP-1 2305281-09

Client Sample ID:	WSP-Golder	CLIENT:
Lab ID:	Luminant-MLSES PDP CCR	Project:
Collection Date:	31404097.019	Project No:
Matrix:	2305281	Lab Order:

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0818	0.0100	0.0300		mg/L	1	05/25/23 11:03 AM
Calcium	2.82	0.100	0.300		mg/L	1	05/25/23 11:03 AM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: RA
Chloride	6.66	0.300	1.00		mg/L	1	05/23/23 02:40 AM
Fluoride	<0.100	0.100	0.400		mg/L	1	05/23/23 02:40 AM
Sulfate	1.33	1.00	3.00	J	mg/L	1	05/23/23 02:40 AM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	111	10.0	10.0		mg/L	1	05/22/23 04:35 PM

Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: MW-18A
Project:	Luminant-MLSES PDP CCR	Lab ID: 2305281-10
Project No:	31404097.019	Collection Date: 05/18/23 02:50 PM
Lab Order:	2305281	Matrix: AQUEOUS

Lab Order: 2305281				Matrix: AQUI	EOUS	
Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATE	R	SW60	20B			Analyst: SP
Boron	0.202	0.0100	0.0300	mg/L	1	05/25/23 11:05 AM
Calcium	2.83	0.100	0.300	mg/L	1	05/25/23 11:05 AM
ANIONS BY IC METHOD - WATER	र	E30	0			Analyst: RA
Chloride	9.80	0.300	1.00	mg/L	1	05/23/23 02:57 AM
Fluoride	<0.100	0.100	0.400	mg/L	1	05/23/23 02:57 AM
Sulfate	7.59	1.00	3.00	mg/L	1	05/23/23 02:57 AM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	100	10.0	10.0	mg/L	1	05/22/23 04:35 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

SDL - Sample Detection Limit

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 11

CLIENT:WSP-GolderWork Order:2305281Project:Luminant-MLSES PDP CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS4_230228A

Sample ID: DCS2-109023	Batch ID	109023		TestNo:	SW	6020B		Units:	mg/L	-
SampType: DCS2	Run ID:	ICP-MS4	_230228A	Analysis	a Date: 2/28	8/2023 10:47	:00 AM	Prep Date:	2/27	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Calcium		0.273	0.300	0.300	0	90.9	70	130	0	0
Sample ID: DCS4-109023	Batch ID	109023		TestNo:	sw	6020B		Units:	mg/L	-
SampType: DCS4	Run ID:	ICP-MS4	_230228A	Analysis	s Date: 2/28	8/2023 10:52	:00 AM	Prep Date:	2/27	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Boron		0.0320	0.0300	0.0300	0	107	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Limit
- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 2305281

WSP-Golder

CLIENT:

Project: Luminant-MLSES PDP CCR

ICP-MS4_230526A **RunID:**

Sample ID: ICV-230526	Batch ID:	R127050)	TestNo:	SW	6020B		Units:	mg/L	
SampType: ICV	Run ID:	ICP-MS4	_230526A	Analysis	Date: 5/2	6/2023 10:59	:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.102	0.0300	0.100	0	102	90	110		
Calcium		2.68	0.300	2.50	0	107	90	110		
Sample ID: LCVL-230526	Batch ID:	R127050)	TestNo:	SW	/6020B		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS4	_230526A	Analysis	Date: 5/2	6/2023 11:13	:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.0210	0.0300	0.0200	0	105	80	120		
Calcium		0.107	0.300	0.100	0	107	80	120		
Sample ID: CCV1-230526	Batch ID:	R127050)	TestNo:	SW	6020B		Units:	mg/L	
SampType: ССV	Run ID:	ICP-MS4	_230526A	Analysis	Date: 5/2	6/2023 11:47	:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.194	0.0300	0.200	0	96.9	90	110		
Calcium		5.05	0.300	5.00	0	101	90	110		

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Reporting Limit

RL

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit

Page 2 of 11

R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

CLIENT: Work Order:	WSP-Go 2305281				ANALYTICAL QC SUMMARY REPO						
Project:	Luminan	t-MLSES F	PDP CCR				RunII): I	CP-MS5_	23022	8B
Sample ID: DCS2	-109023	Batch ID:	109023		TestNo:	SWe	6020B		Units:	mg/L	
SampType: DCS2		Run ID:	ICP-MS	5_230228B	Analysis	8 Date: 2/28	/2023 10:51	:00 AM	Prep Date:	2/27/2	2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Calcium			0.275	0.300	0.300	0	91.6	70	130	0	0
Sample ID: DCS4	-109023	Batch ID:	109023		TestNo:	SWe	6020B		Units:	mg/L	
SampType: DCS4		Run ID:	ICP-MS	5_230228B	Analysis	s Date: 2/28	/2023 10:56	6:00 AM	Prep Date:	2/27/2	2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			0.0350	0.0300	0.0300	0	117	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 3 of 11

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

	03281					_				
0	minant-MLSES F					RunID		CP-MS5_2		
The QC data in batch 11 06A, 2305281-07A, 230				5281-01A, 230	5281-02A, 2	305281-03A	, 230528	1-04A, 230528	31-05A,	2305281-
Sample ID: MB-110309	Batch ID:	110309		TestNo	: SW	6020B		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS5	5_230525A	Analysi	s Date: 5/25	/2023 10:28	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		<0.0100	0.0300							
Calcium		<0.100	0.300							
Sample ID: LCS-11030	9 Batch ID:	110309		TestNo	: SW	6020B		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS5	5_230525A	Analysi	s Date: 5/25	/2023 10:32	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		0.191	0.0300	0.200	0	95.5	80	120		
Calcium		4.76	0.300	5.00	0	95.2	80	120		
Sample ID: LCSD-1103	09 Batch ID:	110309		TestNo	: SW	6020B		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS5	5_230525A	Analysi	s Date: 5/25	/2023 10:35	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		0.201	0.0300	0.200	0	101	80	120	5.17	15
Calcium		4.80	0.300	5.00	0	96.1	80	120	0.905	15
Sample ID: 2305281-05	A SD Batch ID:	110309		TestNo	: SW	6020B		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS5	5_230525A	Analysi	s Date: 5/25	/2023 10:42	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		0.0645	0.150	0	0.0711				9.85	20
Calcium		9.86	1.50	0	9.65				2.07	20
Sample ID: 2305281-05	A PDS Batch ID:	110309		TestNo	: SWO	6020B		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS5	5_230525A	Analysi	is Date: 5/25	/2023 11:08	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		0.279	0.0300	0.200	0.0711	104	75	125		
Calcium		13.7	0.300	5.00	9.65	81.3	75	125		
Sample ID: 2305281-05	AMS Batch ID:	110309		TestNo	: SWO	6020B		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS5	5_230525A	Analysi	s Date: 5/25	/2023 11:12	:00 AM	Prep Date:	5/24/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Boron		0.283	0.0300	0.200	0.0711	106	75	125		
Calcium		14.2	0.300	5.00	9.65	90.7	75	125		

ANALYTICAL QC SUMMARY REPORT

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit

> J Analyte detected between SDL and RL

CLIENT:

Work Order:

WSP-Golder

2305281

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 4 of 11

CLIENT:WSP-GolderWork Order:2305281Project:Luminant-MLSES PDP CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_230525A

Sample ID: 2305281-05A MSD Batch ID: 110309 TestNo: SW6020B Units: mg/L SampType: MSD Run ID: ICP-MS5_230525A Analysis Date: 5/25/2023 11:15:00 AM Prep Date: 5/24/2023 RL SPK value %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Result Ref Val Boron 0.287 0.0300 0.200 0.0711 108 75 125 1.65 15 Calcium 14.4 0.300 5.00 9.65 94.1 75 125 1.20 15

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 5 of 11

Work Order: 2305281

WSP-Golder

CLIENT:

Project: Li	uminant-MLSES I	DP CCR				RunID	: 1	CP-MS5	_23052	25A
Sample ID: ICV-23052	5 Batch ID:	R126998	3	TestNo:	sv	V6020B		Units:	mg/L	-
SampType: ICV	Run ID:	ICP-MS	5_230525A	Analysis	a Date: 5/2	25/2023 10:13:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.0952	0.0300	0.100	0	95.2	90	110		
Calcium		2.41	0.300	2.50	0	96.5	90	110		
Sample ID: LCVL-230	525 Batch ID:	R126998	3	TestNo:	SV	V6020B		Units:	mg/L	-
SampType: LCVL	Run ID:	ICP-MS	5_230525A	Analysis	a Date: 5/2	25/2023 10:21:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.0193	0.0300	0.0200	0	96.6	80	120		
Calcium		0.0885	0.300	0.100	0	88.5	80	120		
Sample ID: CCV1-230	525 Batch ID:	R126998	3	TestNo:	sv	V6020B		Units:	mg/L	-
SampType: CCV	Run ID:	ICP-MS	5_230525A	Analysis	a Date: 5/2	25/2023 11:17:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.207	0.0300	0.200	0	103	90	110		
Calcium		4.67	0.300	5.00	0	93.4	90	110		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 6 of 11

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

2305281 Luminant-MLSES PDP CCR **Project:**

WSP-Golder

CLIENT:

Work Order:

Project:	Lumina	nt-MLSES Pl	DP CCR				RunII):]	IC2_2305	17A	
Sample ID: DCS2- SampType: DCS2	110195	Batch ID: Run ID:	110195 IC2_23		TestNo Analys	b: E300 is Date: 5/17 /		46 PM	Units: Prep Date	mg/ e: 5/17	′L 7/2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLimit Qu
Chloride			0.520	1.00	0.5000	0	104	70	130	0	0
Fluoride			0.220	0.400	0.2000	0	110	70	130	0	0
Sulfate			1.54	3.00	1.500	0	102	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 7 of 11

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

CLIENT:	WSP-Golder
Work Order:	2305281

IC2_230522A

11

RunID:

Project: Luminant-MLSES PDP CCR

The QC data in batch 110263 applies to the following samples: 2305281-01B, 2305281-02B, 2305281-03B, 2305281-04B, 2305281-05B, 2305281-06B, 2305281-07B, 2305281-08B, 2305281-09B, 2305281-10B

Sample ID: MB-110263	Batch ID:	110263		TestNo	E30	0		Units:	mg/L	
SampType: MBLK	Run ID:	IC2_230	522A	Analysi	s Date: 5/22	/2023 11:10	:40 AM	Prep Date:	5/22/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Chloride		<0.300	1.00							
Fluoride		<0.100	0.400							
Sulfate		<1.00	3.00							
Sample ID: LCS-110263	Batch ID:	110263		TestNo	: E30	0		Units:	mg/L	
SampType: LCS	Run ID:	IC2_230	522A	Analysi	s Date: 5/22	/2023 11:27	:40 AM	Prep Date:	5/22/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	GRPD R	PDLimit Qua
Chloride		9.72	1.00	10.00	0	97.2	90	110		
Fluoride		3.87	0.400	4.000	0	96.9	90	110		
Sulfate		29.2	3.00	30.00	0	97.5	90	110		
Sample ID: LCSD-110263	Batch ID:	110263		TestNo	: E30	0		Units:	mg/L	
SampType: LCSD	Run ID:	IC2_230	522A	Analysi	s Date: 5/22	/2023 11:44	:41 AM	Prep Date:	5/22/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	&RPD R	PDLimit Qua
Chloride		9.78	1.00	10.00	0	97.8	90	110	0.606	20
Fluoride		3.91	0.400	4.000	0	97.8	90	110	1.01	20
Sulfate		29.4	3.00	30.00	0	98.0	90	110	0.547	20
Sample ID: 2305279-01AMS	Batch ID:	110263		TestNo	E30	0		Units:	mg/L	
SampType: MS	Run ID:	IC2_230	522A	Analysi	s Date: 5/22	/2023 2:12:	44 PM	Prep Date:	5/22/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	&RPD R	PDLimit Qua
Chloride		<3.00	10.0	200.0	0	0	90	110		S
Fluoride		194	4.00	200.0	5.334	94.2	90	110		
Sulfate		215	30.0	200.0	28.23	93.6	90	110		
Sample ID: 2305279-01AMSD	Batch ID:	110263		TestNo	: E30	0		Units:	mg/L	
SampType: MSD	Run ID:	IC2_230	522A	Analysi	s Date: 5/22	/2023 2:29:	44 PM	Prep Date:	5/22/2	023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	&RPD R	PDLimit Qua
Chloride		<3.00	10.0	200.0	0	0	90	110	0	20 S
Fluoride		198	4.00	200.0	5.334	96.2	90	110	2.05	20
Sulfate		219	30.0	200.0	28.23	95.6	90	110	1.89	20

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 8 of
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

Analyte detected between SDL and RL Ν

33

IC2_230522A

RunID:

Work Order: 2305281 Project: Luminant-MLSES PDP CCR

WSP-Golder

CLIENT:

Sample ID: 2305281-07BMS	Batch ID:	110263		TestNo	: E30	D		Units:	mg/L		
SampType: MS	Run ID:	IC2_230	522A	Analys	s Date: 5/22	/2023 4:45:	43 PM	Prep Date:	5/22/2	023	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	RPDLimit	Qual
Chloride		211	10.0	200.0	23.31	93.6	90	110			
Fluoride		200	4.00	200.0	0	99.9	90	110			
Sulfate		406	30.0	200.0	244.3	80.7	90	110			S
Sample ID: 2305281-07BMSD	Batch ID:	110263		Teethle	. 500	0					
		110200		TestNo	: E30	J		Units:	mg/L		
SampType: MSD	Run ID:	IC2_230	522A		E30		43 PM	Units: Prep Date:	mg/L 5/22/2	2023	
	Run ID:		522A RL						5/22/2		Qual
	Run ID:	IC2_230		Analys	s Date: 5/22	/2023 5:02:		Prep Date:	5/22/2		Qual
SampType: MSD Analyte Chloride Fluoride	Run ID:	IC2_230 Result	RL	Analys SPK value	s Date: 5/22 Ref Val	/2023 5:02: %REC	LowLim	Prep Date: it HighLimit %	5/22/2 %RPD R	RPDLimit	Qual

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits

Page 9 of 11

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT: WSP-Golder Work Order:

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES PDP CCR

2305281

RunID :	IC2_230522A
----------------	-------------

Sample ID:	ICV-230522	Batch ID:	R126928		TestNo	: E30	n		Units:	mg/L
•		Run ID:		224						-
SampType:		Run ID:	IC2_2305	228	Analysi	s Date: 5/22	/2023 10:36	:40 AM	Prep Date	•
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			24.9	1.00	25.00	0	99.5	90	110	
Fluoride			9.94	0.400	10.00	0	99.4	90	110	
Sulfate			76.0	3.00	75.00	0	101	90	110	
Sample ID:	CCV1-230522	Batch ID:	R126928		TestNo	E300	D		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2305	22A	Analysi	s Date: 5/22	/2023 5:53:	44 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			9.77	1.00	10.00	0	97.7	90	110	
Fluoride			3.94	0.400	4.000	0	98.6	90	110	
Sulfate			29.3	3.00	30.00	0	97.8	90	110	
Sample ID:	CCV2-230522	Batch ID:	R126928		TestNo	: E30	D		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2305	22A	Analysi	s Date: 5/22	/2023 9:51:	44 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			9.69	1.00	10.00	0	96.9	90	110	
Fluoride			3.92	0.400	4.000	0	97.9	90	110	
Sulfate			29.2	3.00	30.00	0	97.2	90	110	
Sample ID:	CCV3-230522	Batch ID:	R126928		TestNo	: E30	D		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2305	22A	Analysi	s Date: 5/23	/2023 1:49:	43 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			9.62	1.00	10.00	0	96.2	90	110	
Fluoride			3.90	0.400	4.000	0	97.4	90	110	
Sulfate			28.9	3.00	30.00	0	96.5	90	110	
Sample ID:	CCV4-230522	Batch ID:	R126928		TestNo	: E30	D		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2305	22A	Analysi	s Date: 5/23	/2023 5:30:	43 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	
Fluoride			4.12	0.400	4.000	0	103	90	110	
Sulfate			30.6	3.00	30.00	0	102	90	110	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Analyte detected between SDL and RL

J

35

Page 10 of 11

- Ν Parameter not NELAP certified

CLIENT:	WSP-Gol	der			ΛΝ	ΑΙ ΥΤΙ			J MMAR	VRF	PORT
Work Order:	2305281				AIN						
Project:	Luminant-	MLSES P	DP CCR				RunII): V	VC_230522	2C	
The QC data in batc 06B, 2305281-07B,					05281-01B, 2305	281-02B, 23	305281-03E	3, 230528 ⁻	1-04B, 230528	81-05B, 23	305281-
Sample ID: MB-110)269	Batch ID:	110269		TestNo:	M254	40C		Units:	mg/L	
SampType: MBLK		Run ID:	WC_23052	2C	Analysis	s Date: 5/22/	2023 4:35:	00 PM	Prep Date:	5/22/202	3
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPI	DLimit Qual
Total Dissolved Solid	ds (Residue,	Filtera	<10.0	10.0							
Sample ID: LCS-11	0269	Batch ID:	110269		TestNo:	M254	40C		Units:	mg/L	
SampType: LCS		Run ID:	WC_23052	2C	Analysis	s Date: 5/22/	2023 4:35:	00 PM	Prep Date:	5/22/202	3
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPI	DLimit Qual
Total Dissolved Solid	ds (Residue,	Filtera	763	10.0	745.6	0	102	90	113		
Sample ID: 230521	3-02A-DUP	Batch ID:	110269		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_23052	2C	Analysis	s Date: 5/22/	2023 4:35:	00 PM	Prep Date:	5/22/202	3
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolved Solid	ds (Residue,	Filtera	1080	50.0	0	1090				1.39	5
Sample ID: 230527	4-02A-DUP	Batch ID:	110269		TestNo:	M254	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_23052	2C	Analysis	s Date: 5/22/	2023 4:35:	00 PM	Prep Date:	5/22/202	3
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual

3.65

5

Total Dissolved Solids (Residue, Filtera 50.0 1080 0 1115

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 11 of 11
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

Date: 31-	-May-23
-----------	---------

CLIEN Work O Project:	order: 2	/SP-Golder 305281 uminant-MLS	SES PDP C	CCR
TestNo:	E300		MDL	MQL
Analyte			mg/L	mg/L
Chloride			0.300	1.00
Fluoride			0.100	0.400
Sulfate			1.00	3.00
TestNo:	SW6020B		MDL	MQL
Analyte			mg/L	mg/L
Boron			0.0100	0.0300
Calcium			0.100	0.300
TestNo:	M2540C		MDL	MQL
Analyte			mg/L	mg/L
Total Dise	solved Solids	(Residue, Filt	10.0	10.0

August 24, 2023

Jacob Jarvis WSP-Golder 1601 S. Mopac Expy, Suite 325B Austin, Texas 78746 TEL: (361) 877-5533 FAX: RE: Luminant-MLSES PDP5 CCR

Order No.: 2308216

Dear Jacob Jarvis:

DHL Analytical, Inc. received 10 sample(s) on 8/16/2023 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2308216	10
WorkOrderSampleSummary 2308216	
PrepDatesReport 2308216	
AnalyticalDatesReport 2308216	
Analytical Report 2308216	16
AnalyticalQCSummaryReport 2308216	
MQLSummaryReport 2308216	

					2300 D	Web	Pho : wv	ne 5 vw.	512.3 dhla	388. naly	.822 ytica	2 al.co	om	7866	64		С	H	AI	N-	-C)F	-C			י ס כ	i	
						Email	: log					al.c	om											P	AGE		OF	
CLIENT: WSP						DATE			-15-										AB l	JSE	ON	LY			7 0	0-		
ADDRESS: AVSTINT	7					POŧ	PO#: 31404097,019								DHL WORKORDER #: 2308216													
PHONE: 512-695-8		AIL:				PROJECT LOCATION OR NAME: 2VMINA						ΛŃ		M	151	55	0	16	25	-(R	k,						
DATA REPORTED TO:		JAR	VIS			CLIENT PROJECT # 31404097,019														-	-							
ADDITIONAL REPORT CO						1 1			CONTRACTOR OF TAXABLE PARTY.		<u>514</u>	<u>D4</u>	<u>D9</u>	<u>7,1</u>	19	-			_	1 · 1			HN	BR	<u> 44</u>	101		
Authorize 5% surcharge		=WATE	2		DIMENT	PI	RESE			_		8				PCB 8082 [] 608.3 [] PCB 8270 [] 625.1 []		METALS 6020 🗆 200.8 🗆 DISS. METALS 🗆				TCLP-METALS CRCRA 8 CTX-11 C Pb C						
for TRRP report?		LIQUID		P=PAI					NaOH 🗆 Zn Acetate 🛛 ICE 🕅 UNPRESERVED 🚯		3260]	TPH 1005 🗆 TPH 1006 🗆 HOLD 1006 🗆			PAH 8270 HOLD PAH	0 0 6	HERB 8321 🗆 T PHOS 🗆 AMMONIA 🗆	S. MET			TCLP-SVOC 🗆 VOC 🗆 PEST 🗆 HERB 🗆		RCI LI IGN LI DGAS LI DILÆGREASE LI TDS LI TSS LI % MOIST LI CYANIDE LI	-				
🗆 Yes 🛛 No		SOIL		SL=SL	UDGE	ainers H.PO.			ceta ERVI	SES	3 OOH	요		5.10	무	CB 827	AM		KALIN		EST			-				
	Only SC	D=SOLID		1	· · · · · · · · · · · · · · · · · · ·	# of Containers			Zn A	ANALYSES	ВТЕХ 🗆 МТВЕ 🗆 [МЕТНОВ 8260]	1006	GRO 8015 DRO 8015 VDC 8260 VDC 624 1	SVOC 8270 SVOC 625.1			SOH	200.8		ANIONS 300 🗆 9056 🗆		RCRA		APPENDI X 11				
	DHL	ollection	Collection		Container	ont				Z	TBE	H		l s	PH C	08.	Ē	120	CHRON					E				
Field Sample I.D.	Lab #	Date	Time	Matrix	Туре	# of Co	HNO3	H ₂ SO ₄			Σ	1005	8015	C 8270	8270	8082 [3 8321	ALS 60		ONS 30	-SVOC	-MET		8				
							티토	H ₂	E Ra		BTE	H	GRO	svo	PAH	2 2	HER	MET	푌님	ANIC	TCL	1 I I I I I I I I I I I I I I I I I I I	TDS TDS	A		FIE	LD NOTE	S
MWITA		-14-23	1440	W	P	2	X		X	4														X	-			
PDP-24	02	1	1525	W	P		X		Z	4				_		+		_		$\left \right $	_	+	_	K.	1	<u> </u>		
PDP 25	03		1615	W	P	2	X		Y							+		\rightarrow			\rightarrow		_	X				
PDP-26	04	the second secon	1710	W	P	2	X		Z							_		\rightarrow	_	$\left \right $	\rightarrow	\rightarrow	+	<u>B</u> I		<u> </u>		
mw 20A	1	-15-23		W	P	3	X	\rightarrow	Ľ.			-	_			-		-		$\left \right $	_	_	_	×-				
PDP 23	06		0845	W	P	2	X		7				_	_		+-	$\left - \right $	\rightarrow	+-	$\left - \right $	+		+	捝	_			
DVP-1	07		0845	N	P	2	X		-X	>		\rightarrow	_			+		-	_	$\left - \right $	-+	+	+	X				
III WIN	08		0945	W	P	2	X	-							- -	+-	$\left - \right $	+	+	$\left \right $	+			₩.				
PDP-22	09		1035	W	ρ	$\frac{2}{2}$	Ŕ		+				+	+	$\left - \right $	+	$\left \right $	-	-	$\left \right $		+	+	\mathbf{A}	+			
MW 19A	10	AP .	1190	W	Г	4		\square	\uparrow	4			-	+-	\vdash	+	$\left \right $	+	+	$\left \right $	+	+	+					
							+	\vdash	+	-				+	\vdash		$\left \right $		+	$\left \right $	+	+	+					
						+ + -			+	-			+	+	\vdash	+			+			+			+			
									-	1				+		+-	$\left \right $	+	+					++				
	-					++	+		+				+	+		1		+	+		\uparrow	╈		$\uparrow \uparrow$				
Relinquished By (Sign)	1I		DATE/TIME			ved by:				Т	URN	AR	DUN	DTI	ИE	LA	B US	E ON	LY			\sim			TH	ERMO (#78	/
Atinto		1	8-15-2	3 19	330	Fa	de	R		(C)	ALL I	FIRS	T FO	R RU	SH)	RE	CEIV	ING [·]	EMP	(°C):	_	5	, /	$) \sim$	-		0	
Relinquished By: (Sign)	Relinquished By: (Sign)				ved by:	N	2	R	USH					DAYE														
Calle	Valle 8/10/23 073 ON				1A	1/1	N	2			400	3 DA			CL	ISTO	DY SE	ALS C	DN IC	E CH	IEST:	EST: □ BROKEN 🖉 INTACT □ NOT USED □ UPS □ COURIER □ HAND DELIVERED		SED				
Relinquished By: (Sign)			DATE/TIME		Recei	ved by:								DTHE	R□		RRIE	R: [LSQ	FI	EDE	(🗆	UPS	L) COI	JRIER	⊔ HAN	ID DELIVER	ED
							DUE DATE □ DHL COC REV 4 MAR 2023																					

Eric Lau

From: John DuPont <dupont@dhlanalytical.com>
Sent: Tuesday, May 28, 2019 11:35 AM
To: Eric Lau <login@dhlanalytical.com>
Subject: FW: CCR Analysis

 ★ Appendix III Parameters: Metals (Ca and B)
 Anions (Cl, F, and SO4)
 TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl) Ra-226 Ra-228

5

	Sample	Receipt Chec	klist		
Client Name: WSP-Golder			Date Recei	ived: 8/16/2023	
Work Order Number: 2308216			Received b	y: GLK	
Sî.					
Checklist completed by:	8/16/202	3	Reviewed k	w. Sh	8/16/2023
Signature	Date	.0		Initials	Date
	Carrier name:	FedEx 1day			
	eaner name.	<u>1 ddex i ddy</u>			
Shipping container/cooler in good condition?		Yes 🖌	No 🗌	Not Present	
Custody seals intact on shipping container/coo	ler?	Yes 🖌	No	Not Present	
Custody seals intact on sample bottles?		Yes	No	Not Present 🗹	
Chain of custody present?		Yes 🗸	No		
Chain of custody signed when relinquished and	I received?	Yes 🗸	No		
Chain of custody agrees with sample labels?		Yes 🖌	No		
Samples in proper container/bottle?		Yes 🖌	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🖌	No 🗌		
Water - VOA vials have zero headspace?		Yes	No	No VOA vials submit	ted 🗹 NA
Water - pH<2 acceptable upon receipt?		Yes 🗸	No	NA LOT #	13171
		Adjusted? N	0	Checked by	EL
Water - ph>9 (S) or ph>10 (CN) acceptable upo	on receipt?	Yes	No	NA 🗹 LOT #	
		Adjusted?		Checked by	
Container/Temp Blank temperature in complian	ice?	Yes 🖌	No		
Cooler # 1					
Temp °C 3.7					
Seal Intact Y					
Any No response must be detailed in the comm	ents section below.				
Client contacted:	Date contacted:		Per	rson contacted:	
Contacted by:	Regarding:				
Comments:					
Corrective Action:					

		tory Name: DHL Analytical, Inc. tory Review Checklist: Reportable Data						
Proje	ect Na	me: Luminant-MLSES PDP5 CCR LRC Date	e: 8/24/2023					
Revie	ewer I	Name: Angie O'Donnell Laborator	ry Work Order: 2308216					
			h: See Analytical Dates Report					
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
	11	Chain-of-Custody (C-O-C)		105	110	1.11		
R1	OI	1) Did samples meet the laboratory's standard conditions of sample ac	ceptability upon receipt?	Χ				R1-01
		2) Were all departures from standard conditions described in an except				Χ		
R2	OI	Sample and Quality Control (QC) Identification	*					
		1) Are all field sample ID numbers cross-referenced to the laboratory	ID numbers?	Χ				
		2) Are all laboratory ID numbers cross-referenced to the corresponding	g QC data?	Χ				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding times?		Χ				
		2) Other than those results < MQL, were all other raw values bracketer	d by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		X				
		4) Were all analyte identifications checked by a peer or supervisor?		X				
		5) Were sample detection limits reported for all analytes not detected?		X		v		
		6) Were all results for soil and sediment samples reported on a dry wei7) Were % moisture (or solids) reported for all soil and sediment samples				X X		
		8) Were bulk soils/solids samples for volatile analysis extracted with n				A X		
		9) If required for the project, TICs reported?	nethanor per El A Method 5055:			X		
R4	0	Surrogate Recovery Data				1		
IX-	0	1) Were surrogates added prior to extraction?				Χ		
		2) Were surrogate percent recoveries in all samples within the laborate	ory QC limits?			Χ		
R5	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		Χ				
		2) Were blanks analyzed at the appropriate frequency?		Χ				
		3) Where method blanks taken through the entire analytical process, in	cluding preparation and, if	X				
		applicable, cleanup procedures?						
		4) Were blank concentrations < MDL?		Χ				
		5) For analyte(s) detected in a blank sample, was the concentration, un				X		
R6	OI	factors, in all associated field samples, greater than 10 times the conce Laboratory Control Samples (LCS):	entration in the blank sample?					
NU	01	1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, include	ing prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	ing prep and cleanup steps:	X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC	Climits?	X				
		5) Does the detectability data document the laboratory's capability to d						
		to calculate the SDLs?		Χ				
		6) Was the LCSD RPD within QC limits (if applicable)?		Χ				
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data						
		1) Were the project/method specified analytes included in the MS and	MSD?	Χ				
		2) Were MS/MSD analyzed at the appropriate frequency?		Χ				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC 1	ımıts?	**	X			R7-03
De	01	4) Were MS/MSD RPDs within laboratory QC limits?		Χ				
R8	OI	Analytical Duplicate Data		X				
		 Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? 		X X				
		3) Were RPDs or relative standard deviations within the laboratory QC	Climite?	X				
R9	OI	Method Quantitation Limits (MQLs):		Λ				
	51	1) Are the MQLs for each method analyte included in the laboratory d	ata package?	Χ				
		2) Do the MQLs correspond to the concentration of the lowest non-zer		X				
		3) Are unadjusted MQLs and DCSs included in the laboratory data page		X				
R10	OI	Other Problems/Anomalies	×					
		1) Are all known problems/anomalies/special conditions noted in this	LRC and ER?	Χ				
		2) Was applicable and available technology used to lower the SDL to a		X				
		affects on the sample results?		Λ				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory Ac		x				
		analytes, matrices and methods associated with this laboratory data part	ckage?					

Lab	ora	tory Review Checklist (continued): Supporting	z Data							
			C Date: 8/24/2023							
			oratory Work Order: 2308216							
		-	•							
-			Batch: See Analytical Dates Report							
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵		
S1	OI	Initial Calibration (ICAL)								
		1) Were response factors and/or relative response factors for each	analyte within QC limits?	Χ						
		2) Were percent RSDs or correlation coefficient criteria met?		Χ						
		3) Was the number of standards recommended in the method used		Χ						
		4) Were all points generated between the lowest and highest stand	ard used to calculate the curve?	Χ						
		5) Are ICAL data available for all instruments used?		Χ						
		6) Has the initial calibration curve been verified using an appropria		Χ						
S2	OI	Initial and Continuing calibration Verification (ICCV and CC	CV) and Continuing Calibration							
		blank (CCB):								
		1) Was the CCV analyzed at the method-required frequency?		Χ						
		2) Were percent differences for each analyte within the method-rea	quired QC limits?	Х						
		3) Was the ICAL curve verified for each analyte?		Х						
		4) Was the absolute value of the analyte concentration in the inorg	anic CCB < MDL?	Х						
S3	0	Mass Spectral Tuning:								
) Was the appropriate compound for the method used for tuning?								
		2) Were ion abundance data within the method-required QC limits?								
S4	0	Internal Standards (IS):								
		1) Were IS area counts and retention times within the method-requ	uired QC limits?	Х						
S5	OI	Raw Data (NELAC Section 5.5.10)								
		1) Were the raw data (for example, chromatograms, spectral data)	reviewed by an analyst?	Χ						
		2) Were data associated with manual integrations flagged on the ra	aw data?	Χ						
S6	0	Dual Column Confirmation								
		1) Did dual column confirmation results meet the method-required	1QC?			Χ				
S7	0	Tentatively Identified Compounds (TICs):								
		1) If TICs were requested, were the mass spectra and TIC data sub	pject to appropriate checks?			Χ				
S8	Ι	Interference Check Sample (ICS) Results:								
		1) Were percent recoveries within method QC limits?		Х						
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standar	rd Additions							
		1) Were percent differences, recoveries, and the linearity with								
		method?	ini me qe inina speemea in me	Х						
S10	OI	Method Detection Limit (MDL) Studies								
510	01	1) Was a MDL study performed for each reported analyte?		X						
		2) Is the MDL either adjusted or supported by the analysis of DCS	S-9	X						
S11	OI	Proficiency Test Reports:	55:	Λ						
511	01	1) Was the lab's performance acceptable on the applicable proficie	may tasts or avaluation studios?	X						
S12	OI	Standards Documentation	they tests of evaluation studies:	Λ						
512	OI	1) Are all standards used in the analyses NIST-traceable or obtained	ad from other appropriate courses?	X						
S13	OI	Compound/Analyte Identification Procedures	ca nom omer appropriate sources?	Л						
515		1) Are the procedures for compound/analyte identification docume	ented?	X						
S14	OI	Demonstration of Analyst Competency (DOC)	cincu:	Л						
514		1) Was DOC conducted consistent with NELAC Chapter 5 – Appe	endix C2	X						
		 was DOC conducted consistent with NELAC Chapter 5 – Apper Is documentation of the analyst's competency up-to-date and or 		A X						
S15	OI	Verification/Validation Documentation for Methods (NELAC		Λ						
515										
		1) Are all the methods used to generate the data documente applicable?	ed, verified, and validated, where	X						
S16	OI	I Laboratory Standard Operating Procedures (SOPs):								
510				_						
	1	1) Are laboratory SOPs current and on file for each method perform	med?	Х						

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

al Ant Signature

08/24/23 Date

CLIENT:WSP-GolderProject:Luminant-MLSES PDP5 CCRLab Order:2308216

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300- Anions Analysis Method M2540C- Total Dissolved Solids Analysis

Exception Report R1-01

Samples were received and login performed on 8/16/2023. A total of 10 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Anion Analysis, the recovery of Sulfate for the Matrix Spike and Matrix Spike Duplicate (2308216-02 MS/MSD) was slightly below the method control limits. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated LCS. No further corrective action was taken.

_

Date: 24-Aug-23

CLIENT: Project: Lab Order:	WSP-Golder Luminant-MLSES F 2308216	PDP5 CCR	Work Order Sample	Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2308216-01	MW-17A		08/14/23 02:40 PM	08/16/2023
2308216-02	PDP-24		08/14/23 03:25 PM	08/16/2023
2308216-03	PDP-25		08/14/23 04:15 PM	08/16/2023
2308216-04	PDP-26		08/14/23 05:10 PM	08/16/2023
2308216-05	MW-20A		08/15/23 07:50 AM	08/16/2023
2308216-06	PDP-23		08/15/23 08:45 AM	08/16/2023
2308216-07	DUP-1		08/15/23 08:45 AM	08/16/2023
2308216-08	MW-19		08/15/23 09:45 AM	08/16/2023
2308216-09	PDP-22		08/15/23 10:35 AM	08/16/2023
2308216-10	MW-18A		08/15/23 11:40 AM	08/16/2023

2308216

WSP-Golder

Luminant-MLSES PDP5 CCR

Lab Order:

Client:

Project:

PREP DATES REPORT

308216-01B MW-17A 08/14/23 02:40 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 008216-02A PDP-24 08/14/23 02:25 PM Aqueous SW3005A Aprep Metals : ICP-MS 08/17/23 07:38 AM 111721 038216-02A PDP-24 08/14/23 03:25 PM Aqueous SW3005A Aprep Metals : ICP-MS 08/17/23 07:38 AM 111718 038216-02A PDP-24 08/14/23 03:25 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 0308216-03A PDP-24 08/14/23 03:25 PM Aqueous M2540C TDS Preparation 08/21/23 10:14 AM 111798 0308216-03A PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aprep Metals : ICP-MS 08/17/23 07:38 AM 111721 038216-03B PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 038216-03B PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111721 038216-03B	Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
MW-17A 08/14/23 02:40 PM Aqueous M2540C TDS Preparation 08/17/23 01:19 PM 111742 308216-02A PDP-24 08/14/23 03:25 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-02B PDP-24 08/14/23 03:25 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111789 DPD-24 08/14/23 03:25 PM Aqueous B300 Anion Preparation 08/17/23 07:38 AM 111712 308216-03A PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111712 308216-03A PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04A PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05A PDP-25 08/14/23 04:15 PM Aqueous M2540C TDS Preparation 08/21/23 10:14 AM 111794 308216-05A PDP-26 08/14/23 05:10 PM <t< td=""><td>2308216-01A</td><td>MW-17A</td><td>08/14/23 02:40 PM</td><td>Aqueous</td><td>SW3005A</td><td>Aq Prep Metals : ICP-MS</td><td>08/17/23 07:38 AM</td><td>111721</td></t<>	2308216-01A	MW-17A	08/14/23 02:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
308216-02A PDP-24 08/14/23 03:25 PM Aqueous SW3005A Aq Pro Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-02B PDP-24 08/14/23 03:25 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 9DP-24 08/14/23 03:25 PM Aqueous M2500 TAN 08/17/23 07:38 AM 111721 308216-02A PDP-24 08/14/23 04:15 PM Aqueous SW3005A Ap Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03A PDP-25 08/14/23 04:15 PM Aqueous SW3005A Ap Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous SW3005A Ap Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-04B PDP-25 08/14/23 04:15 PM Aqueous M240C TDS Preparation 08/17/23 07:38 AM 111721 308216-04B PDP-26 08/14/23 05:10 PM Aqueous M240C TDS Preparation 08/17/23 07:38 AM 111721 308216-04B PDP-26 08/	2308216-01B	MW-17A	08/14/23 02:40 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
908216-02B PD-24 08/14/23 03:25 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 PD-24 08/14/23 03:25 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 208216-03A PD-24 08/14/23 03:25 PM Aqueous M2540C TDS Preparation 08/21/23 01:19 PM 111742 308216-03A PD-25 08/14/23 04:15 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04A PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04A PDP-26 08/14/23 04:15 PM Aqueous M2540C TDS Preparation 08/21/23 07:14 AM 111798 308216-04A PDP-26 08/14/23 05:10 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/1723 07:38 AM 111721 308216-05A MW-20A 08/15/23 0		MW-17A	08/14/23 02:40 PM	Aqueous	M2540C	TDS Preparation	08/17/23 01:19 PM	111742
PDP-2408/14/23 03:25 PMAqueousE300Anion Preparation08/21/23 10:14 AM111798PDP-2408/14/23 03:25 PMAqueousM2540CTDS Preparation08/17/23 01:19 PM111721308216-03APDP-2508/14/23 04:15 PMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-03BPDP-2508/14/23 04:15 PMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-03BPDP-2508/14/23 04:15 PMAqueousE300Anion Preparation08/21/23 10:14 AM111789308216-03DPDP-2508/14/23 04:15 PMAqueousE300Anion Preparation08/17/23 07:38 AM111721308216-04DPDP-2508/14/23 04:15 PMAqueousE300Anion Preparation08/17/23 07:38 AM111721308216-04DPDP-2608/14/23 05:10 PMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 08:45 AMAqueousSW3005AAq Prep Metais : ICP-MS08/17/23 07:38 AM111721308216-05APDP-2308/15/23 08:45 AMAqueousSW3005AAq Prep Metais : ICP-MS08/1723 07:38 AM111721308216-05APDP-23<	2308216-02A	PDP-24	08/14/23 03:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
PDP-24 08/14/23 03:25 PM Aqueous M2540C TDS Preparation 08/17/23 01:19 PM 111742 308216-03A PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aq Pep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aq Pep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 9DP-25 08/14/23 04:15 PM Aqueous B300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04A PDP-26 08/14/23 05:10 PM Aqueous SW3005A Aq Pep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05A PDP-26 08/14/23 05:10 PM Aqueous M2540C TDS Preparation 08/21/23 10:14 AM 111782 308216-05A MW-20A 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/21/23 10:14 AM 111793 308216-05A MW-20A 08/15/23 07:50 AM	2308216-02B	PDP-24	08/14/23 03:25 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
S08216-03A PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-03B PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04A PDP-25 08/14/23 04:15 PM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-04A PDP-26 08/14/23 05:10 PM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-05A MW-20A 08/14/23 05:10 PM Aqueous E300 Anion Preparation 08/17/23 07:38 AM 111721 308216-05A MW-20A 08/14/23 05:10 PM Aqueous M3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05A MW-20A 08/15/23 07:50 AM Aqueous M3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B <td></td> <td>PDP-24</td> <td>08/14/23 03:25 PM</td> <td>Aqueous</td> <td>E300</td> <td>Anion Preparation</td> <td>08/21/23 10:14 AM</td> <td>111798</td>		PDP-24	08/14/23 03:25 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
PDP-2508/14/23 04:15 PMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-03BPDP-2508/14/23 04:15 PMAqueousE300Anion Preparation08/21/23 10:14 AM111798PDP-2508/14/23 04:15 PMAqueousE300Anion Preparation08/21/23 10:14 AM111794308216-04APDP-2608/14/23 05:10 PMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-04APDP-2608/14/23 05:10 PMAqueousE300Anion Preparation08/21/23 10:14 AM111798308216-04BPDP-2608/14/23 05:10 PMAqueousB300Anion Preparation08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-05APDP-2308/15/23 07:50 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-05APDP-2308/15/23 08:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-07ADUP-108/15/23 08:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-07A <t< td=""><td></td><td>PDP-24</td><td>08/14/23 03:25 PM</td><td>Aqueous</td><td>M2540C</td><td>TDS Preparation</td><td>08/17/23 01:19 PM</td><td>111742</td></t<>		PDP-24	08/14/23 03:25 PM	Aqueous	M2540C	TDS Preparation	08/17/23 01:19 PM	111742
Addition	2308216-03A	PDP-25	08/14/23 04:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
PDP-25 08/14/23 04:15 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 9DP-25 08/14/23 04:15 PM Aqueous M2540C TDS Preparation 08/17/23 01:19 PM 111742 308216-04A PDP-26 08/14/23 05:10 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-04B PDP-26 08/14/23 05:10 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05A MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/2		PDP-25	08/14/23 04:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
PDP-25 08/14/23 04:15 PM Aqueous M2540C TDS Preparation 08/17/23 01:19 PM 111742 308216-04A PDP-26 08/14/23 05:10 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-04B PDP-26 08/14/23 05:10 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05A MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-06A PDP-23 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111793 308216-07B DUP-1 <	2308216-03B	PDP-25	08/14/23 04:15 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
And PDP-26 08/14/23 05:10 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-04B PDP-26 08/14/23 05:10 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-04B PDP-26 08/14/23 05:10 PM Aqueous M2540C TDS Preparation 08/17/23 01:19 PM 111721 308216-05A MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/17/23 07:38 AM 111721 308216-06A PDP-23 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-13 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 </td <td></td> <td>PDP-25</td> <td>08/14/23 04:15 PM</td> <td>Aqueous</td> <td>E300</td> <td>Anion Preparation</td> <td>08/21/23 10:14 AM</td> <td>111798</td>		PDP-25	08/14/23 04:15 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
308216-04B PDP-26 08/14/23 05:10 PM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05A MW-20A 08/14/23 05:10 PM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 01:19 PM 111742 308216-05A MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05A MW-20A 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111779 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111771 308216-07B		PDP-25	08/14/23 04:15 PM	Aqueous	M2540C	TDS Preparation	08/17/23 01:19 PM	111742
PDP-2608/14/23 05:10 PMAqueousM2540CTDS Preparation08/17/23 01:19 PM11172308216-05AMW-20A08/15/23 07:50 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-05BMW-20A08/15/23 07:50 AMAqueousE300Anion Preparation08/21/23 10:14 AM111798308216-05BMW-20A08/15/23 07:50 AMAqueousM2540CTDS Preparation08/18/23 10:37 AM111775308216-06APDP-2308/15/23 08:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-06BPDP-2308/15/23 08:45 AMAqueousE300Anion Preparation08/21/23 10:14 AM111798308216-07ADUP-108/15/23 08:45 AMAqueousM2540CTDS Preparation08/18/23 10:37 AM111721308216-07BDUP-108/15/23 08:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-07BDUP-108/15/23 08:45 AMAqueousE300Anion Preparation08/21/23 10:14 AM111798308216-07BDUP-108/15/23 08:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-07BDUP-108/15/23 09:45 AMAqueousM2540CTDS Preparation08/21/23 10:14 AM111798308216-07BDUP-108/15/23 09:45 AMAqueousSW3005AAq Prep Metals : ICP-MS08/17/23 07:38 AM111721308216-07AMW-19 <t< td=""><td>2308216-04A</td><td>PDP-26</td><td>08/14/23 05:10 PM</td><td>Aqueous</td><td>SW3005A</td><td>Aq Prep Metals : ICP-MS</td><td>08/17/23 07:38 AM</td><td>111721</td></t<>	2308216-04A	PDP-26	08/14/23 05:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
308216-05A MW-20A 08/15/23 07:50 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05B MW-20A 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111771 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111795 308216-07B	2308216-04B	PDP-26	08/14/23 05:10 PM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
308216-05B MW-20A 08/15/23 07:50 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-05B MW-20A 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111798 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/18/23 10:37 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-07B DUP-1		PDP-26	08/14/23 05:10 PM	Aqueous	M2540C	TDS Preparation	08/17/23 01:19 PM	111742
MW-20A 08/15/23 07:50 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 09:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111791 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS <	2308216-05A	MW-20A	08/15/23 07:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
308216-06A PDP-23 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/17/23 07:38 AM 111721 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-07B DUP-1 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111771 308216-08A	2308216-05B	MW-20A	08/15/23 07:50 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
308216-06B PDP-23 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07A DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation		MW-20A	08/15/23 07:50 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775
PDP-23 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/21/23 10:14 AM 111798 308216-07B DUP-1 08/15/23 09:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721	2308216-06A	PDP-23	08/15/23 08:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
308216-07A DUP-1 08/15/23 08:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111721 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721	2308216-06B	PDP-23	08/15/23 08:45 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
308216-07B DUP-1 08/15/23 08:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798 DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798		PDP-23	08/15/23 08:45 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775
DUP-1 08/15/23 08:45 AM Aqueous M2540C TDS Preparation 08/18/23 10:37 AM 111775 308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798	2308216-07A	DUP-1	08/15/23 08:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
308216-08A MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798	2308216-07B	DUP-1	08/15/23 08:45 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
MW-19 08/15/23 09:45 AM Aqueous SW3005A Aq Prep Metals : ICP-MS 08/17/23 07:38 AM 111721 308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798		DUP-1	08/15/23 08:45 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775
308216-08B MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798	2308216-08A	MW-19	08/15/23 09:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
		MW-19	08/15/23 09:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
MW-19 08/15/23 09:45 AM Aqueous E300 Anion Preparation 08/21/23 10:14 AM 111798	2308216-08B	MW-19	08/15/23 09:45 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
		MW-19	08/15/23 09:45 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798

Page 1 of 2

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2308216-08B	MW-19	08/15/23 09:45 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775
2308216-09A	PDP-22	08/15/23 10:35 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
2308216-09B	PDP-22	08/15/23 10:35 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
	PDP-22	08/15/23 10:35 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
	PDP-22	08/15/23 10:35 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775
2308216-10A	MW-18A	08/15/23 11:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	08/17/23 07:38 AM	111721
2308216-10B	MW-18A	08/15/23 11:40 AM	Aqueous	E300	Anion Preparation	08/21/23 10:14 AM	111798
	MW-18A	08/15/23 11:40 AM	Aqueous	M2540C	TDS Preparation	08/18/23 10:37 AM	111775

Luminant-MLSES PDP5 CCR

Project:

Lab Order:2308216Client:WSP-Golder

Project: Luminant-MLSES PDP5 CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2308216-01A	MW-17A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:37 PM	ICP-MS5_230817B
2308216-01B	MW-17A	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 06:55 PM	IC2_230821B
	MW-17A	Aqueous	M2540C	Total Dissolved Solids	111742	1	08/17/23 05:10 PM	WC_230817D
2308216-02A	PDP-24	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	10	08/17/23 02:39 PM	ICP-MS5_230817B
2308216-02B	PDP-24	Aqueous	E300	Anions by IC method - Water	111798	10	08/21/23 05:07 PM	IC2_230821B
	PDP-24	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 07:13 PM	IC2_230821B
	PDP-24	Aqueous	M2540C	Total Dissolved Solids	111742	1	08/17/23 05:10 PM	WC_230817D
2308216-03A	PDP-25	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	10	08/17/23 03:35 PM	ICP-MS5_230817B
	PDP-25	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:42 PM	ICP-MS5_230817B
2308216-03B	PDP-25	Aqueous	E300	Anions by IC method - Water	111798	10	08/21/23 06:01 PM	IC2_230821B
	PDP-25	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 07:31 PM	IC2_230821B
	PDP-25	Aqueous	M2540C	Total Dissolved Solids	111742	1	08/17/23 05:10 PM	WC_230817D
2308216-04A	PDP-26	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:32 PM	ICP-MS5_230817B
2308216-04B	PDP-26	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 07:49 PM	IC2_230821B
	PDP-26	Aqueous	M2540C	Total Dissolved Solids	111742	1	08/17/23 05:10 PM	WC_230817D
2308216-05A	MW-20A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:45 PM	ICP-MS5_230817B
2308216-05B	MW-20A	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 09:19 PM	IC2_230821B
	MW-20A	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C
2308216-06A	PDP-23	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:47 PM	ICP-MS5_230817B
2308216-06B	PDP-23	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 09:37 PM	IC2_230821B
	PDP-23	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C
2308216-07A	DUP-1	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:50 PM	ICP-MS5_230817B
2308216-07B	DUP-1	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 09:55 PM	IC2_230821B
	DUP-1	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C
2308216-08A	MW-19	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:52 PM	ICP-MS5_230817B
	MW-19	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	10	08/17/23 03:38 PM	ICP-MS5_230817B
2308216-08B	MW-19	Aqueous	E300	Anions by IC method - Water	111798	10	08/21/23 06:19 PM	IC2_230821B
	MW-19	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 10:13 PM	IC2_230821B

Page 1 of 2

Lab Order:2308216Client:WSP-Golder

Project: Luminant-MLSES PDP5 CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2308216-08B	MW-19	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C
2308216-09A	PDP-22	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:55 PM	ICP-MS5_230817B
2308216-09B	PDP-22	Aqueous	E300	Anions by IC method - Water	111798	10	08/21/23 06:37 PM	IC2_230821B
	PDP-22	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 10:31 PM	IC2_230821B
	PDP-22	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C
2308216-10A	MW-18A	Aqueous	SW6020B	Total Metals: ICP-MS - Water	111721	1	08/17/23 02:57 PM	ICP-MS5_230817B
2308216-10B	MW-18A	Aqueous	E300	Anions by IC method - Water	111798	1	08/21/23 10:49 PM	IC2_230821B
	MW-18A	Aqueous	M2540C	Total Dissolved Solids	111775	1	08/18/23 05:00 PM	WC_230818C

CLIENT:WSP-GolderClient Sample ID: MW-17AProject:Luminant-MLSES PDP5 CCRLab ID: 2308216-01Project No:31404097.019Collection Date: 08/14/23 02:40 PMLab Order:2308216Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.432	0.0100	0.0300	mg/L	1	08/17/23 02:37 PM
Calcium	4.21	0.100	0.300	mg/L	1	08/17/23 02:37 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	9.10	0.300	1.00	mg/L	1	08/21/23 06:55 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	08/21/23 06:55 PM
Sulfate	36.8	1.00	3.00	mg/L	1	08/21/23 06:55 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	117	10.0	10.0	mg/L	1	08/17/23 05:10 PM

Oualifiers:	ND - Not Detected at the SDL
Quanners.	TO THE DELECTED II THE DDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical, Inc.				Date	e:	24-Aug-23		
CLIENT:	WSP-Golder			Clier	nt Sample	ID: PDP-	24		
Project:	Luminant-MLSES PDP5 CCR			Lab ID: 2308216-02					
Project No:	31404097.019		llection Da	lection Date: 08/14/23 03:25 PM					
Lab Order:	2308216		Matrix: AQUEOUS						
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TOTAL METAL	_S: ICP-MS - WAT	ER	SW60	20B				Analyst: SP	
Boron		3.36	0.100	0.300	I	mg/L	10	08/17/23 02:39 PM	
Calcium		29.8	1.00	3.00	I	mg/L	10	08/17/23 02:39 PM	
ANIONS BY IC	METHOD - WATE	R	E30	0				Analyst: RA	
Chloride		19.1	0.300	1.00	I	mg/L	1	08/21/23 07:13 PM	
Fluoride		0.817	0.100	0.400	I	mg/L	1	08/21/23 07:13 PM	

353 08/21/23 05:07 PM Sulfate 10.0 10 30.0 mg/L TOTAL DISSOLVED SOLIDS M2540C Analyst: JS Total Dissolved Solids (Residue, 640 08/17/23 05:10 PM 10.0 10.0 mg/L 1 Filterable)

Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: PDP-25
Project:	Luminant-MLSES PDP5 CCR	Lab ID: 2308216-03
Project No:	31404097.019	Collection Date: 08/14/23 04:15 PM
Lab Order:	2308216	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.150	0.0100	0.0300	mg/L	1	08/17/23 02:42 PM
Calcium	71.5	1.00	3.00	mg/L	10	08/17/23 03:35 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	93.6	3.00	10.0	mg/L	10	08/21/23 06:01 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	08/21/23 07:31 PM
Sulfate	51.3	1.00	3.00	mg/L	1	08/21/23 07:31 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	457	10.0	10.0	mg/L	1	08/17/23 05:10 PM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

 CLIENT:
 WSP-Golder
 Client Sample ID: PDP-26

 Project:
 Luminant-MLSES PDP5 CCR
 Lab ID: 2308216-04

 Project No:
 31404097.019
 Collection Date: 08/14/23 05:10 PM

 Lab Order:
 2308216
 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0451	0.0100	0.0300		mg/L	1	08/17/23 02:32 PM
Calcium	2.99	0.100	0.300		mg/L	1	08/17/23 02:32 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: RA
Chloride	4.58	0.300	1.00		mg/L	1	08/21/23 07:49 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	08/21/23 07:49 PM
Sulfate	2.12	1.00	3.00	J	mg/L	1	08/21/23 07:49 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	106	10.0	10.0		mg/L	1	08/17/23 05:10 PM

Oualifiers:	ND - Not Detected at the SDL
Quanners.	The Percence at the BEE

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:WSP-GolderClient Sample ID: MW-20AProject:Luminant-MLSES PDP5 CCRLab ID: 2308216-05Project No:31404097.019Collection Date: 08/15/23 07:50 AMLab Order:2308216Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.0715	0.0100	0.0300	mg/L	1	08/17/23 02:45 PM
Calcium	4.72	0.100	0.300	mg/L	1	08/17/23 02:45 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	11.4	0.300	1.00	mg/L	1	08/21/23 09:19 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	08/21/23 09:19 PM
Sulfate	21.0	1.00	3.00	mg/L	1	08/21/23 09:19 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	130	10.0	10.0	mg/L	1	08/18/23 05:00 PM

Oualifiers:	ND - Not Detected at the SDL
Quanners:	ND - Not Detected at the SD

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT: WSP-Golder Client Sample ID: PDP-23 **Project:** Luminant-MLSES PDP5 CCR Lab ID: 2308216-06 **Project No:** 31404097.019 Collection Date: 08/15/23 08:45 AM Lab Order: 2308216 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0681	0.0100	0.0300		mg/L	1	08/17/23 02:47 PM
Calcium	2.37	0.100	0.300		mg/L	1	08/17/23 02:47 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: RA
Chloride	8.12	0.300	1.00		mg/L	1	08/21/23 09:37 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	08/21/23 09:37 PM
Sulfate	1.20	1.00	3.00	J	mg/L	1	08/21/23 09:37 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	118	10.0	10.0		mg/L	1	08/18/23 05:00 PM

Oualifiers:	ND - Not Detected at the SDL
Quanners.	ND - NOT DETECTED at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: DUP-1
Project:	Luminant-MLSES PDP5 CCR	Lab ID: 2308216-07
Project No:	31404097.019	Collection Date: 08/15/23 08:45 AM
Lab Order:	2308216	Matrix: AQUEOUS

Analyses	ses Result SDL RL Qual				Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0671	0.0100	0.0300		mg/L	1	08/17/23 02:50 PM
Calcium	2.44	0.100	0.300		mg/L	1	08/17/23 02:50 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: RA
Chloride	8.02	0.300	1.00		mg/L	1	08/21/23 09:55 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	08/21/23 09:55 PM
Sulfate	1.22	1.00	3.00	J	mg/L	1	08/21/23 09:55 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	114	10.0	10.0		mg/L	1	08/18/23 05:00 PM

Oualifiers:	ND - Not Detected at the SDL
Zummers.	

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: MW-19
Project:	Luminant-MLSES PDP5 CCR	Lab ID: 2308216-08
Project No:	31404097.019	Collection Date: 08/15/23 09:45 AM
Lab Order:	2308216	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.627	0.0100	0.0300		mg/L	1	08/17/23 02:52 PM
Calcium	113	1.00	3.00		mg/L	10	08/17/23 03:38 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: RA
Chloride	67.5	3.00	10.0		mg/L	10	08/21/23 06:19 PM
Fluoride	0.142	0.100	0.400	J	mg/L	1	08/21/23 10:13 PM
Sulfate	275	10.0	30.0		mg/L	10	08/21/23 06:19 PM
TOTAL DISSOLVED SOLIDS		M254	OC				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	877	10.0	10.0		mg/L	1	08/18/23 05:00 PM

Qualifiers: NI	O - Not Detected at the SDL
-----------------------	-----------------------------

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical, Inc.			Da	ate:	24-Aug-23		
CLIENT:	WSP-Golder			Clier	nt Sampl	le ID: PDP-2	22	
Project:	Luminant-MLSES PD	P5 CCR			La	b ID: 23082	16-09	
Project No:	31404097.019		Collection Date: 08/15/23 10:35 AM					
Lab Order:	2308216		Matrix: AQUEOUS					
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METAI	LS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron		0.116	0.0100	0.0300		mg/L	1	08/17/23 02:55 PM
Calcium		10.4	0.100	0.300		mg/L	1	08/17/23 02:55 PM
ANIONS BY IC	METHOD - WATER		E30	0				Analyst: RA
Chloride		8.19	0.300	1.00		ma/L	1	08/21/23 10:31 PM

Chloride Fluoride	8.19 <0.100	0.300 0.100	1.00 0.400	mg/L mg/L	1 1	08/21/23 10:31 PM 08/21/23 10:31 PM
Sulfate	68.4	1.00	3.00	mg/L	1	08/21/23 10:31 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	223	10.0	10.0	mg/L	1	08/18/23 05:00 PM

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	WSP-Golder	Client Sample ID: MW-18A
Project:	Luminant-MLSES PDP5 CCR	Lab ID: 2308216-10
Project No:	31404097.019	Collection Date: 08/15/23 11:40 AM
Lab Order:	2308216	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.195	0.0100	0.0300	mg/L	1	08/17/23 02:57 PM
Calcium	2.58	0.100	0.300	mg/L	1	08/17/23 02:57 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	8.37	0.300	1.00	mg/L	1	08/21/23 10:49 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	08/21/23 10:49 PM
Sulfate	6.79	1.00	3.00	mg/L	1	08/21/23 10:49 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	87.0	10.0	10.0	mg/L	1	08/18/23 05:00 PM

Oualifiers:	ND - Not Detected at the SDL
Quanners.	THE THOU DELECTED AT THE BEE

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 10

CLIENT:WSP-GolderWork Order:2308216Project:Luminant-MLSES PDP5 CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-

ICP-MS5_230606A

Sample ID: DCS2-110475	Batch ID	110475		TestNo:	SW	6020B		Units:	mg/L	-
SampType: DCS2	Run ID:	ICP-MS5_	_230606A	Analysis	Date: 6/6/	/2023 4:34:00	PM	Prep Date:	6/5/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium		0.259	0.300	0.300	0	86.2	70	130	0	0
Sample ID: DCS4-110475	Batch ID	110475		TestNo:	SW	6020B		Units:	mg/L	-
SampType: DCS4	Run ID:	ICP-MS5_	_230606A	Analysis	a Date: 6/6/	/2023 4:39:00	PM	Prep Date:	6/5/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Boron		0.0327	0.0300	0.0300	0	109	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

N Parameter not NELAP certified

Wards Ordens 22	00016			AN	ALYT	ICAL (QC SI	JMMAR	Y R	EPORT
	308216 1minant-MLSES)			RunII). I	CP-MS5_2	73081	7R
Project: Lu The QC data in batch 1				8216-014 230	8216-024 2			_		
06A, 2308216-07A, 230				0210-01A, 230	0210-02A, 2	5002 10-03 <i>F</i>	, 20002 I	0-047, 20002	10-03A,	2300210-
Sample ID: MB-11172	Batch I	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS	5_230817B	Analys	is Date: 8/17	/2023 2:21:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		<0.0100	0.0300							
Calcium		<0.100	0.300							
Sample ID: LCS-11172	21 Batch II	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS	5_230817B	Analys	s Date: 8/17	/2023 2:24:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	RPDLimit Qual
Boron		0.181	0.0300	0.200	0	90.3	80	120		
Calcium		4.86	0.300	5.00	0	97.3	80	120		
Sample ID: LCSD-111	721 Batch II	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS	5_230817B	Analys	s Date: 8/17	/2023 2:27:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	RPDLimit Qual
Boron		0.190	0.0300	0.200	0	95.0	80	120	5.02	15
Calcium		4.93	0.300	5.00	0	98.5	80	120	1.29	15
Sample ID: 2308216-0	4A SD Batch II	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS	5_230817B	Analys	s Date: 8/17	/2023 2:34:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	RPDLimit Qual
Boron		<0.0500	0.150	0	0.0451				0	20
Calcium		2.87	1.50	0	2.99				4.21	20
Sample ID: 2308216-0	4A PDS Batch II	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS	5_230817B	Analys	s Date: 8/17	/2023 3:00:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	RPDLimit Qual
Boron		0.236	0.0300	0.200	0.0451	95.6	75	125		
Calcium		7.61	0.300	5.00	2.99	92.4	75	125		
Sample ID: 2308216-0	4A MS Batch II	D: 111721		TestNo	: SW	6020B		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS	5_230817B	Analys	is Date: 8/17	/2023 3:03:	00 PM	Prep Date:	8/17/2	2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	RPDLimit Qual
Boron		0.246	0.0300	0.200	0.0451	100	75	125		
Calcium		7.73	0.300	5.00	2.99	94.6	75	125		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 2 of 10

J Analyte detected between SDL and RL

CLIENT:

WSP-Golder

CLIENT:WSP-GolderWork Order:2308216Project:Luminant-MLSES PDP5 CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_230817B

Sample ID: 2308216-04A MSD	Batch ID:	111721		TestNo	: SW	/6020B		Units:	mg/L	-
SampType: MSD	Run ID:	ICP-MS5_	230817B	Analysi	s Date: 8/1	7/2023 3:05:0	00 PM	Prep Date	e: 8/17 /	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Boron		0.247	0.0300	0.200	0.0451	101	75	125	0.348	15
Calcium		7.77	0.300	5.00	2.99	95.5	75	125	0.545	15

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 3 of 10

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

	CI			AN	ALYT	ICAL (QC SU	MMA	RY REPORT
	MLSES P	DP5 CCR				RunII): I	CP-MS5_	_230817B
0817	Batch ID:	R128658		TestNo:	SWe	6020B		Units:	mg/L
	Run ID:	ICP-MS5_	230817B	Analysis	Date: 8/17	/2023 10:13	:00 AM	Prep Date	:
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
		0.0985	0.0300	0.100	0	98.5	90	110	
		2.52	0.300	2.50	0	101	90	110	
230817	Batch ID:	R128658		TestNo:	SWe	6020B		Units:	mg/L
	Run ID:	ICP-MS5_	230817B	Analysis	Date: 8/17	/2023 10:18	:00 AM	Prep Date	:
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
		0.0234	0.0300	0.0200	0	117	80	120	
		0.0916	0.300	0.100	0	91.6	80	120	
230817	Batch ID:	R128658		TestNo:	SWe	6020B		Units:	mg/L
	Run ID:	ICP-MS5_	230817B	Analysis	Date: 8/17	/2023 11:46	:00 AM	Prep Date	:
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
		0.186	0.0300	0.200	0	93.2	90	110	
		4.94	0.300	5.00	0	98.9	90	110	
230817	Batch ID:	R128658		TestNo:	SWe	6020B		Units:	mg/L
	Run ID:	ICP-MS5_	230817B	Analysis	Date: 8/17	/2023 3:08:	00 PM	Prep Date	:
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
		0.199	0.0300	0.200	0	99.3	90	110	
		0.199 4.89	0.0300 0.300	0.200 5.00	0 0	99.3 97.8	90 90	110 110	
230817	Batch ID:	4.89			0				mg/L
230817	Batch ID: Run ID:	4.89	0.300	5.00 TestNo:	0 SW6	97.8	90	110	Ū.
230817		4.89 R128658	0.300	5.00 TestNo:	0 SW6	97.8	90	110 Units: Prep Date	Ū.
	2308216	2308216 Luminant-MLSES F 0817 Batch ID: Run ID: 230817 Batch ID: Run ID: 230817 Batch ID: Run ID: 230817 Batch ID: Run ID:	2308216 Luminant-MLSES PDP5 CCR 0817 Batch ID: R128658 Run ID: ICP-MS5_ Result 0.0985 2.52 230817 Batch ID: R128658 Run ID: ICP-MS5_ Result 0.0234 0.0916 230817 Batch ID: R128658 Run ID: ICP-MS5_ Result 0.186 4.94 230817 Batch ID: R128658 Run ID: ICP-MS5_ Result 0.186 4.94	2308216 Luminant-MLSES PDP5 CCR 10817 Batch ID: R128658 Run ID: ICP-MS5_230817B Run ID: ICP-MS5_230817B 0.0985 0.0300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 2.52 0.300 0.0234 0.0300 0.0916 0.300 230817 Batch ID: Result RL 0.186 0.0300 4.94 0.300 230817 Batch ID: R128658 Run ID: ICP-MS5_230817B	AN 2308216 Luminant-MLSES PDP5 CCR 0817 Batch ID: R128658 TestNo: Result RL SPK value 0.0985 0.0300 0.100 2.50 230817 Batch ID: R128658 TestNo: Result RL SPK value 0.0234 0.0300 0.0200 0.0916 0.300 0.100 230817 Batch ID: R128658 TestNo: Result RL SPK value 0.0234 0.0300 0.0200 0.0916 0.300 0.100 230817 Batch ID: R128658 TestNo: Result RL SPK value 0.186 0.0300 0.200 Result RL SPK value 0.186 0.0300 0.200 0.200 <td>2308216 Luminant-MLSES PDP5 CCR TestNo: SW6 Run ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Result RL SPK value Ref Val 0.0985 0.0300 0.100 0 2.52 0.300 2.50 0 230817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q300 5.00 0</td> <td>ANALYTICAL (2308216 Luminant-MLSES PDP5 CCR RunII 0817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13 Result RL SPK value Ref Val %REC 0.0985 0.0300 0.100 0 98.5 2.52 0.300 2.50 0 101 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 Run ID: Run ID: Run ID: Run ID: SUB 0.300 0.2</td> <td>ANALYTICAL QC SU 2308216 RunID: ICAL QC SU 10817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Analysis Date: 8/17/2023 10:13:00 AM Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Analysis Date: 8/17/2023 10:13:00 AM 0.0985 0.0300 0.100 0 98.5 90 2.52 0.300 2.50 0 101 90 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Analysis Date: 8/17/2023 10:18:00 AM 0.0234 0.0300 0.0200 0 117 80 0.0916 0.300 0.100 0 91.6 80 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46:00 AM 0.186 0.0300 0.200 0 93.2 90 <td< td=""><td>ANALYTICAL QC SUMMA. 2308216 RunID: R128658 TestNo: SW6020B Units: 0817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Prep Date Result RL SPK value Ref Val %REC LowLimit HighLimit 0.0985 0.0300 0.100 0 98.5 90 110 2.52 0.300 2.50 0 101 90 110 230817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date 0.0234 0.0300 0.0200 0 117 80 120 0.0916 0.300 0.0200 0 117 80 120 230817 Batch ID: R128658 TestNo: SW6020B Units:</td></td<></td>	2308216 Luminant-MLSES PDP5 CCR TestNo: SW6 Run ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Result RL SPK value Ref Val 0.0985 0.0300 0.100 0 2.52 0.300 2.50 0 230817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q30817 Batch ID: R128658 TestNo: SW6 Run ID: ICP-MS5_230817B Analysis Date: 8/17 Q300 5.00 0	ANALYTICAL (2308216 Luminant-MLSES PDP5 CCR RunII 0817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13 Result RL SPK value Ref Val %REC 0.0985 0.0300 0.100 0 98.5 2.52 0.300 2.50 0 101 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46 Run ID: Run ID: Run ID: Run ID: SUB 0.300 0.2	ANALYTICAL QC SU 2308216 RunID: ICAL QC SU 10817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Analysis Date: 8/17/2023 10:13:00 AM Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Analysis Date: 8/17/2023 10:13:00 AM 0.0985 0.0300 0.100 0 98.5 90 2.52 0.300 2.50 0 101 90 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Analysis Date: 8/17/2023 10:18:00 AM 0.0234 0.0300 0.0200 0 117 80 0.0916 0.300 0.100 0 91.6 80 230817 Batch ID: R128658 TestNo: SW6020B Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 11:46:00 AM 0.186 0.0300 0.200 0 93.2 90 <td< td=""><td>ANALYTICAL QC SUMMA. 2308216 RunID: R128658 TestNo: SW6020B Units: 0817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Prep Date Result RL SPK value Ref Val %REC LowLimit HighLimit 0.0985 0.0300 0.100 0 98.5 90 110 2.52 0.300 2.50 0 101 90 110 230817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date 0.0234 0.0300 0.0200 0 117 80 120 0.0916 0.300 0.0200 0 117 80 120 230817 Batch ID: R128658 TestNo: SW6020B Units:</td></td<>	ANALYTICAL QC SUMMA. 2308216 RunID: R128658 TestNo: SW6020B Units: 0817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:13:00 AM Prep Date Result RL SPK value Ref Val %REC LowLimit HighLimit 0.0985 0.0300 0.100 0 98.5 90 110 2.52 0.300 2.50 0 101 90 110 230817 Batch ID: R128658 TestNo: SW6020B Units: Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date Run ID: ICP-MS5_230817B Analysis Date: 8/17/2023 10:18:00 AM Prep Date 0.0234 0.0300 0.0200 0 117 80 120 0.0916 0.300 0.0200 0 117 80 120 230817 Batch ID: R128658 TestNo: SW6020B Units:

Qualifiers:

CLIENT:

WSP-Golder

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

29

ANALYTICAL QC SUMMARY REPORT

Page 4 of 10

2308216 **Project:** Luminant-MLSES PDP5 CCR

WSP-Golder

CLIENT:

Work Order:

RunID: IC2_230817A

Sample ID: DCS2-111732	Batch ID:	111732		TestNo	: E30	00		Units:	mg/	L
SampType: DCS2	Run ID:	IC2_230	0817A	Analys	is Date: 8/1	7/2023 2:17:	52 PM	Prep Date:	8/17	//2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride		0.560	1.00	0.5000	0	112	70	130	0	0
Fluoride		0.239	0.400	0.2000	0	119	70	130	0	0
Sulfate		1.45	3.00	1.500	0	96.7	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 5 of 10

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

CLIENT:	WSP-Gold	der			ΔΝ	JALVTI	CAL)C SI	IMMAI	V R	EPORT
Work Order:	2308216				1 1 1			-			
Project:	Luminant-	MLSES P	DP5 CCR	ł			RunII): I	C2_23082	1 B	
The QC data in bate 06B, 2308216-07B,					08216-01B, 230	8216-02B, 23	308216-03E	8, 230821	6-04B, 23082	216-05B,	2308216-
Sample ID: MB-11	1798	Batch ID:	111798		TestNo	: E300)		Units:	mg/L	
SampType: MBLK		Run ID:	IC2_230	821B	Analys	is Date: 8/21/	/2023 11:52	2:12 AM	Prep Date:	8/21/2	023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride			<0.300	1.00							
Fluoride			<0.100	0.400							
Sulfate			<1.00	3.00							
Sample ID: LCS-11	11798	Batch ID:	111798		TestNo	E300)		Units:	mg/L	
SampType: LCS		Run ID:	IC2_230	821B	Analys	is Date: 8/21/	/2023 12:10):12 PM	Prep Date:	8/21/2	023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qual
Chloride			9.97	1.00	10.00	0	99.7	90	110		
Fluoride			4.03	0.400	4.000	0	101	90	110		
Sulfate			28.7	3.00	30.00	0	95.7	90	110		
Sample ID: LCSD-	111798	Batch ID:	111798		TestNo	E300)		Units:	mg/L	
SampType: LCSD		Run ID:	IC2_230	821B	Analys	is Date: 8/21/	/2023 12:28	8:12 PM	Prep Date:	8/21/2	023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qual
Chloride			9.89	1.00	10.00	0	98.9	90	110	0.798	20
Fluoride			4.00	0.400	4.000	0	99.9	90	110	0.692	20
Sulfate			28.4	3.00	30.00	0	94.6	90	110	1.19	20
Sample ID: 230826	3-01FMS	Batch ID:	111798		TestNo	E300)		Units:	mg/L	
SampType: MS		Run ID:	IC2_230	821B	Analys	is Date: 8/21/	/2023 4:31:	43 PM	Prep Date:	8/21/2	023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qual
Chloride			2650	100	2000	732.2	95.7	90	110		
Fluoride			2010	40.0	2000	0	100	90	110		
Sulfate			2480	300	2000	648.9	91.4	90	110		
Sample ID: 230826	3-01FMSD	Batch ID:	111798		TestNo	E300)		Units:	mg/L	
SampType: MSD		Run ID:	IC2_230	821B	Analys	is Date: 8/21/	2023 4:49:	43 PM	Prep Date:	8/21/2	023
			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qual
Analyte											
Analyte Chloride			2660	100	2000	732.2	96.4	90	110	0.524	20
				100 40.0	2000 2000	732.2 0	96.4 101	90 90	110 110	0.524 0.588	20 20

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 6 of 10 J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Ν Parameter not NELAP certified

J Analyte detected between SDL and RL

RunID:

IC2_230821B

Work Order:2308216Project:Luminant-MLSES PDP5 CCR

WSP-Golder

CLIENT:

Sample ID: 2308216-02BMS	Batch ID:	111798		TestNo	E300)		Units:	mg/L		
SampType: MS	Run ID:	IC2_230	821B	Analysi	s Date: 8/21	/2023 5:25:	43 PM	Prep Date:	8/21/	2023	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit	Qual
Chloride		218	10.0	200.0	19.58	99.2	90	110			
Fluoride		204	4.00	200.0	1.256	102	90	110			
Sulfate		527	30.0	200.0	352.5	87.1	90	110			S
Sample ID: 2308216-02BMSD	Batch ID:	111798		TestNo	E30)		Units:	mg/L		
SampType: MSD	Run ID:	IC2_230	821B	Analysi	s Date: 8/21	/2023 5:43:	43 PM	Prep Date:	8/21/	2023	
				-							
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit	Qual
Analyte Chloride		Result 219	RL 10.0	SPK value 200.0		%REC 99.8	LowLim 90	it HighLimit %	6RPD	RPDLimit 20	Qual
					Ref Val			0			Qual

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits

Page 7 of 10

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT: WSP-Golder Work Order: 2308216

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES PDP5 CCR

IC2_230821B **RunID:**

Sample ID:	ICV-230821	Batch ID:	R128732		TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC2_23082	1B	Analysis	Date: 8/21/	2023 11:16	5:12 AM	Prep Date:	-	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			25.1	1.00	25.00	0	101	90	110		
Fluoride			10.3	0.400	10.00	0	103	90	110		
Sulfate			73.1	3.00	75.00	0	97.4	90	110		
Sample ID:	CCV1-230821	Batch ID:	R128732		TestNo:	E300			Units:	mg/L	
SampType:	ccv	Run ID:	IC2_23082	1B	Analysis	Date: 8/21/	2023 8:43:	43 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			10.0	1.00	10.00	0	100	90	110		
Fluoride			4.04	0.400	4.000	0	101	90	110		
Sulfate			28.8	3.00	30.00	0	95.8	90	110		
Sample ID:	CCV2-230821	Batch ID:	R128732		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_23082	1B	Analysis	Date: 8/22/ 2	2023 12:19	:43 AM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			10.0	1.00	10.00	0	100	90	110		
Fluoride			4.10	0.400	4.000	0	103	90	110		
Sulfate			28.9	3.00	30.00	0	96.2	90	110		

Qualifiers:

В Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

Reporting Limit

RL

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 8 of 10

CLIENT: Work Order:	WSP-Gol 2308216	der			AN	ALYT	ICAL (QC SI	JMMAF	RY REPORT
Project:	Luminant-	MLSES P	DP5 CCR	L .			RunII): V	WC_23081	7D
The QC data in bar	tch 111742 ap	plies to the	following s	amples: 230	8216-01B, 2308	8216-02B, 2	2308216-03E	8, 230821	6-04B	
Sample ID: MB-11	11742	Batch ID:	111742		TestNo	: M2	540C		Units:	mg/L
SampType: MBLK	Σ.	Run ID:	WC_230	817D	Analysi	s Date: 8/1 7	7/2023 5:10:	00 PM	Prep Date:	8/17/2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Total Dissolved So	lids (Residue,	Filtera	<10.0	10.0						
Sample ID: LCS-1	11742	Batch ID:	111742		TestNo	: M2	540C		Units:	mg/L
SampType: LCS		Run ID:	WC_230	817D	Analysi	s Date: 8/17	7/2023 5:10:	00 PM	Prep Date:	8/17/2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Total Dissolved So	lids (Residue,	Filtera	726	10.0	745.6	0	97.4	90	113	
Sample ID: 23082	02-02A-DUP	Batch ID:	111742		TestNo	: M2	540C		Units:	mg/L
SampType: DUP		Run ID:	WC_230	817D	Analysi	s Date: 8/17	7/2023 5:10:	00 PM	Prep Date:	8/17/2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Total Dissolved So	lids (Residue,	Filtera	1080	50.0	0	1045				2.83 5
Sample ID: 23082	02-03A-DUP	Batch ID:	111742		TestNo	: M2	540C		Units:	mg/L
SampType: DUP		Run ID:	WC_230	817D	Analysi	s Date: 8/1 7	7/2023 5:10:	00 PM	Prep Date:	8/17/2023
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Total Dissolved So	lids (Residue,	Filtera	1180	50.0	0	1170				0.426 5

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

Page 9 of 10

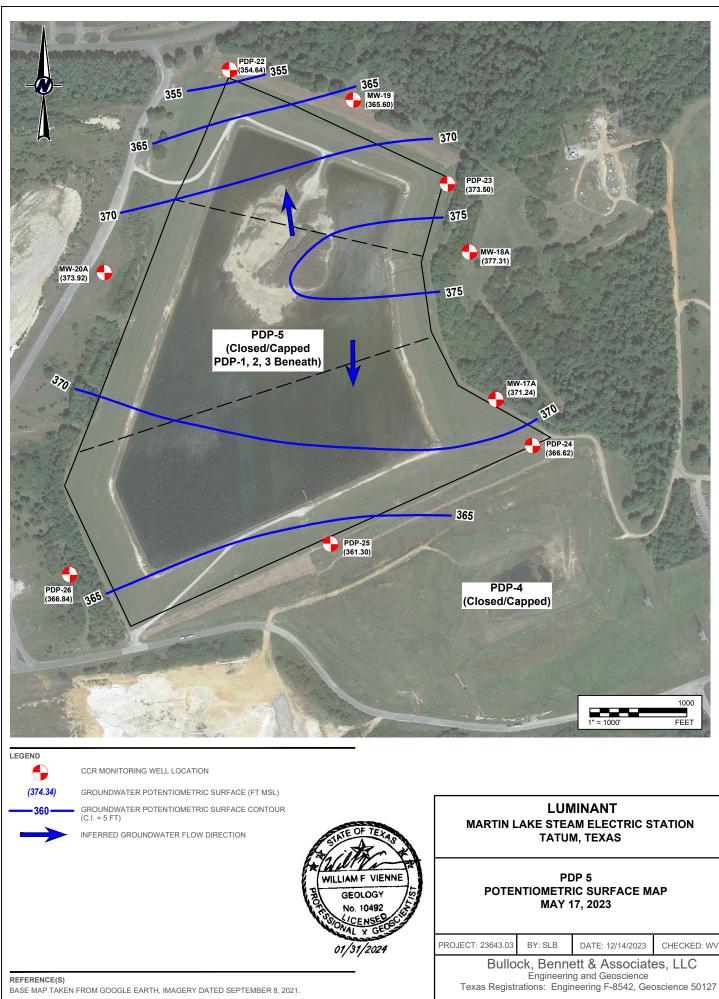
Work Order:	2308216				AN		ICAL (ic si	UNINAK	I KE	
Project:	Luminant-	MLSES F	PDP5 CCR				RunID): V	WC_230818	8C	
The QC data in b 10B	atch 111775 ap	plies to the	following s	amples: 230	8216-05B, 2308	3216-06B, 2	308216-07B	, 230821	6-08B, 23082	16-09B, 2	308216-
Sample ID: MB-	111775	Batch ID:	111775		TestNo	M25	40C		Units:	mg/L	
SampType: MBL	.К	Run ID:	WC_230	818C	Analysi	s Date: 8/18	/2023 5:00:0	00 PM	Prep Date:	8/18/20	23
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RP	DLimit Qual
Total Dissolved S	olids (Residue,	Filtera	<10.0	10.0							
Sample ID: LCS	-111775	Batch ID:	111775		TestNo	M25	40C		Units:	mg/L	
SampType: LCS		Run ID:	WC_230	818C	Analysi	s Date: 8/18	/2023 5:00:0	00 PM	Prep Date:	8/18/20	23
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RP	DLimit Qual
Total Dissolved S	olids (Residue,	Filtera	765	10.0	745.6	0	103	90	113		
Sample ID: 2308	3251-01G-DUP	Batch ID:	111775		TestNo	M25	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_230	818C	Analysi	s Date: 8/18	/2023 5:00:0	00 PM	Prep Date:	8/18/20	23
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RP	DLimit Qual
Total Dissolved S	olids (Residue,	Filtera	4120	50.0	0	4170				1.21	5
Sample ID: 2308	3251-02G-DUP	Batch ID:	111775		TestNo	M25	40C		Units:	mg/L	
SampType: DUP		Run ID:	WC_230	818C	Analysi	s Date: 8/18	/2023 5:00:0	00 PM	Prep Date:	8/18/20	23
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RP	DLimit Qual
Total Dissolved S	olids (Residue,	Filtera	4060	50.0	0	4070				0.246	5

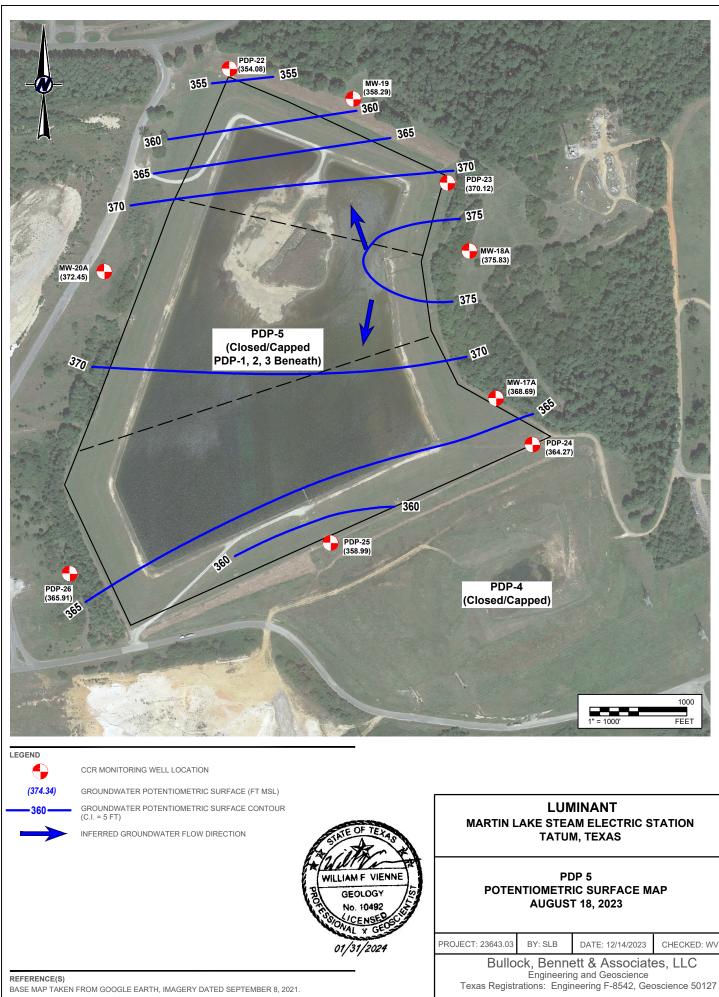
CLIENT:

WSP-Golder

_

ANALYTICAL QC SUMMARY REPORT


Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 10 of 10
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	


CLIENT:	WSP-Golder		
Work Order:	2308216		
Project:	Luminant-MLS	SES PDP5	CCR
TestNo: E300		MDL	MQL
Analyte		mg/L	mg/L
Chloride		0.300	1.00
Fluoride		0.100	0.400
Sulfate		1.00	3.00
TestNo: SW6020	В	MDL	MQL
Analyte		mg/L	mg/L
Boron		0.0100	0.0300
Calcium		0.100	0.300
TestNo: M2540C		MDL	MQL
Analyte		mg/L	mg/L
Total Dissolved So	lids (Residue, Filt	10.0	10.0

MQL SUMMARY REPORT

APPENDIX C

GROUNDWATER POTENTIOMETRIC SURFACE MAPS

